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Abstract The development of whole metagenome shotgun sequencing (WGS)
has enabled the precise characterization of taxonomic diversity and functional
capabilities of microbial communities in situ while obviating organism isola-
tion and cultivation procedures. WGS created with second- and third-generation
sequencing technologies will generate millions of reads and tens (or hundreds)
of gigabytes of information about the organisms under investigation. Despite
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containing an immense amount of information, the reads are unorganized and
unlabeled, leading to a significant challenge in discerning from which genome a read
originated. Thus, analysis of WGS data necessitates first determining community
structure and function from the raw reads before the focus can shift to making
multi-sample comparisons. A typical WGS workflow consists of read assignment
(taxonomic binning and classification), preprocessing techniques (normalization,
dimensionality reduction), exploratory approaches (feature selection and extraction,
ordination), statistical inference (regression, constrained ordination, differential
abundance analysis), and machine learning. The following chapter provides an
overview of these analytical approaches (including challenges and possible pitfalls
that may be encountered by researchers) as well as steps toward their solutions.
Relevant software packages and resources are also discussed.

1 Introduction to Metagenomics

The term “metagenome” originated with Handelsman et al. who defined it as a col-
lection of genomes found in the microflora of soil and described an approach used to
access the organisms living in this ecosystem [1]. Their motivation was influenced
by a continual decline in the discovery of new compounds from an environment
that had previously provided researchers and industry with chemicals that were
antimicrobial or otherwise medicinal in nature. The paucity of newly discovered
compounds followed the realization that many microbes were not culturable and
that microbiologists had greatly underestimated both their numbers and diversity
[1–7]. The reasons behind a microbe’s resistance to culturing vary; their survival
may be dependent upon compounds provided by other resident organisms, and/or
the conditions (e.g., temperature, atmospheric pressure, gaseous elements (along
with their amounts)) may be inadequate for their survival [2]. Regardless of the
cause, it became apparent that the number of organisms that could not be cultured
greatly surpassed the number of microorganisms that could be cultured [1, 2, 5, 6, 8–
11]. Combined, these elements drove a new and oft-interdisciplinary field known as
metagenomics – the study of uncultured genetic material acquired directly from
environmental communities that contain a motley population of organisms. Ensuing
from these developments was the inception of numerous large-scale metagenomic
studies that investigated microbial communities in water, soil, and animals [12–16].
Information acquired from these studies have exposed the intricate influence and
beauty of microbes on processes as vast as the geochemical to human health.

Although specimen isolation and cultivation are not required, sophisticated
computational tools are a necessity in metagenomic analysis. This analysis has been
aided greatly by advances in sequencing technology, which have yielded increased
accuracy in base pair identification, longer reads, and decreases in sequencing costs.
The reduction in sequencing pricing as well as faster computer processors have
made metagenomic analysis more accessible to institutions and laboratories looking
to investigate microbial communities. As such, clinical studies and research related
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to quorum sensing, antibiotic resistance, biofilms, bacteriophages, and food science
along with other areas of interest have become far more common [17–23].

Knowledge obtained from these studies owe much not only to the individuals
involved with undertaking the studies and improving sequencing technology but
also those who have developed the algorithms and methods used to analyze next-
generation sequencing (NGS) and metagenomic data [8, 24–31]. Metagenomic
studies often revolve around determining what is in the sample (classification), how
many organisms are in the sample (binning), and what they are doing (functional
annotation). Additionally, researchers are interested in comparing samples (nor-
malization, clustering, ordination) and determining similarities between samples
(feature selection/extraction). These methods are often accomplished with machine
learning techniques, and each of the aforementioned topics will be addressed in this
chapter.

2 Sequence Quality and Identification

2.1 Introduction to Taxonomic Binning

High throughput whole metagenome shotgun sequencing (WGS) is a reliable
technique used to characterize taxonomic diversity and function of microbial
communities without cultivation of the microorganisms in a laboratory environment.
After WGS, the primary goal is then to infer microbial community structure
and function in the given microbiome from the millions of unlabeled genomic
fragments (known as “reads”) [32]. This is no easy task, however, since algo-
rithmic approaches are necessary to discern taxonomic information. Extracting
information from sequencing reads has accordingly been equated to simultaneously
completing multiple puzzles with their pieces shuffled together [33]. While full-
genome assembly is potentially an effective method for this purpose, constructing
complete genomes from short reads often fails for many reasons including repetitive
nucleotide patterns found within genomes, homologous regions of closely related
regions, and conserved regions among different species [34, 35].

Binning is considered an alternative to full-length genome assembly [36].
Despite still relying on sequencing reads, binning is capable of approximating popu-
lation composition and functional diversity of assigned genomes [37, 38]. There are
two binning methods developed for disentangling metagenomic reads: “supervised”
(taxa-dependent; classification) and “unsupervised” (taxa-independent; clustering).
Supervised binning uses one or more phylogeny-based comparisons that involve
aligning reads to reference genomes, assessing sequence composition properties
such as GC content and oligonucleotide patterns (k-mers), and utilizing hybrid
methods that leverage both alignment and sequence composition approaches [36,
39]. Supervised binning is often not effective for environmental samples or diverse
microbial communities; however, due to bias with respect to previously sequenced
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or well-studied species, many of the reference databases in which supervised
approaches rely are incomplete [33], which results in many reads going unassigned
or being assigned incorrectly. Also, metagenomes with high interspecies diversity
fail to be accurately classified by supervised binning tools [40].

Unsupervised binning, on the other hand, relies on discriminative nucleotides,
sequence composition, and taxa abundance, which is inferred in terms of contig
coverage [41, 42]. Binning techniques that rely on sequence composition assume
that each taxon has a unique genomic signature, which is represented as k-mer
frequency vectors (Fig. 1). Example tools include 2Tbinning, LikelyBin, Metawatt,
SCIMM, self-organizing maps, and VizBin (Table 1). For low-abundance taxa,
composition-based techniques are prone to incorrect taxon assignments since
the generated clusters for these taxa tend to be poorly described [33]. In addi-
tion, they typically require high-quality reads or contigs that are over 1000 bp
in length to achieve acceptable accuracy [43]. Abundance-based techniques are
much better at handling low-abundance taxa and shorter reads. For single-sample
studies, limitations associated with low-abundance taxa are mitigated by enforc-
ing distributional assumptions (e.g., the Lander-Waterman model) to the k-mer
abundance coverage profile. For multi-sample studies, the taxa abundance profiles
are assumed to be correlated between samples [33]. Abundance-based techniques
include AbundanceBin, Canopy, and MBBC. Lastly, hybrid techniques that utilize
both sequence composition and taxa abundance include COCACOLA, CompostBin,
CONCOCT, differential coverage binning, GroopM, MaxBin, MetaBAT, MetaClus-
ter, and MyCC. For a detailed review of unsupervised binning approaches, see
Sedlar et al. [33].

Selection of binning methods depends on the purpose of the metagenomic study,
the computational requirements, as well as the time constraints. In supervised
methods, the length of metagenomic reads, which is in turn dependent upon
the sequencing platform, is also a factor [44–46]. In addition, read coverage
must also be considered since greater coverage may capture rare species with
more accurate results. On the other hand, unsupervised binning is effective for
diverse microbiomes or low-coverage datasets [36]. To improve binning results,
preprocessing (e.g., quality filtering of the sequencing reads) and post-processing
techniques which use different reassembly approaches (e.g., mapping reads to the
bins before reassembly) are options [47–49].

2.2 Taxonomic Classification

A variety of tools are currently available that perform taxonomic classification.
These include methods that rely on a subset of marker genes (MetaPhlAn [50],
MetaPhyler [51], mOTU [52], MicrobeCensus [53], GOTTCHA [54]), and those
that use exploit the entire set of reads, using composition-based approaches, such
as alignment (MEGAN [55]) or k-mer enumeration (CLARK [56], Kraken [57],
LMAT [58], MetaFlow [59], NBC [60], and PhyloSift [61]) [62, 63]. Approaches
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Fig. 1 Unsupervised binning workflow, originally presented in Sedlar et al. [33]
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that utilize sequences, while slower, are enticing in their ability to leverage
additional information for assembly and contamination detection, for example [62].

Marker gene approaches are faster than composition-based approaches but are
limited in the number of reads they can ultimately classify [62]. They vary from
method to method mostly in terms of their marker gene database construction.
Composition-based approaches, on the other hand, differ more algorithmically [63].
For example, CLARK performs classification by first identifying discriminative k-
mers that uniquely characterize reference sequences, which it then uses to classify
query reads based on the number of shared k-mers. Kraken is similar in that it
uses the number of overlapping reads between query and reference to influence the
classification; however, it leverages phylogenetic information during the mapping
step, building a phylogenetic tree. The reference sequence is identified by deter-
mining the lowest common ancestor that contains the k-mer from the query. Other
k-mer approaches that leverage phylogenetic information include PhyloSift and
LMAT. MetaFlow treats classification as a query-to-reference matching problem,
using a bipartite graph. Lastly, NBC is a metagenome fragment classification tool
using k-mer frequency profiles. In short, this tool trains an NBC classifier based
on the frequency of k-mers. Here, X = [x1, x2, · · · , xn] is the set of k-mers in a
sequence. In the training phase, p(xi |Ck) is estimated by the total number of k-mers
xi occurring in all the training sequences that are labeled by Ck . In the testing phase,
given a query sequence, the organism containing the sequence is predicted by the
class that maximizes the posterior probability P(Ck|X).

To evaluate the performance of the tools described above, McIntyre et al.
designed an analysis involving 846 species across 67 simulated and datasets [62].
The performances were evaluated by each tool’s ability to (1) identify taxa in a
sample at genus, species, and strain levels, (2) estimate the relative abundances of
taxa in a sample, and (3) classify individual reads at the species level. For taxa
identification, all tools performed optimally at the genus level, but the performance
dropped noticeably at the strain level. They also determined that the performance of
k-mer-based tools could be improved by introducing an abundance threshold. Read
depth was another important identified factor that had an effect on performance;
they found a positive relationship between the number of recovered species and
read depth. BLAST-MEGAN and PhyloSift were two exceptions, but this trend
could be dampened with the addition of adequate filtering. On the other hand, read
depth had little impact on marker gene-based tools. The authors also showed that an
ensemble classifier that combined the results from the best performing tools could
produce improved results in quantifying the number of species. Combining their
approach with BLAST greatly improved performance; however, because BLAST is
notoriously slow, a faster ensemble showed comparable performance. For relative
abundance comparisons, the authors showed that most of the tools could predict
the proportion of a particular species in a sample to within a few percentage
points. CLARK slightly overestimated relative abundance, but had greater precision
compared to other tools. k-mer-based methods achieved the highest recall with
lower sequencing depth.
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Long but low quality reads generated by newer sequencing platforms are
becoming more readily available. For long, lower quality reads, CLARK and
Diamond-MEGAN performed more robustly than other tools. For classifying indi-
vidual reads, BLAST-MEGAN gave the best precision, whereas CLARK generally
gave the best recall. The last considerations were runtime and memory. The authors
benchmarked all tools under the same conditions and showed that MetaPhlAn,
GOTTCHA, PhyloSift, and NBC used less memory; NBC and BLAST were the
slowest; and CLARK, GOTTCHA, Kraken, MetaFlow, MetaPhlAn, Diamond-
Megan, and LMAT were the fastest. The authors provided a decision tree summary
of usage recommendations (Fig. 2).

It should be noted that despite the large study size, 846 species is only a small
subset of all species that exist. Also, the ability of a given tool to identify “unknown”
organisms was never evaluated. This is highlighted by the fact that as the read depth
increased, most classifiers discovered more species – leaving a perplexing open
problem in metagenomic taxonomic classification. Therefore, more research should
be done to determine how database size affects classification, as well as how other
parameters may affect classifier performance.

2.3 Functional Annotation

Unraveling the functional composition of metagenomes is crucial to understand-
ing the microbe’s metabolic dynamics and how they shape the environment or
adapt to environmental changes. From either assembled individual genomes or
the metagenome as an entity, protein-coding genes can be predicted by scanning
the sequences for start/stop codons. However, gene prediction and the following
functional profiling do not depend on full gene sequences. Functional profiling
can be achieved using short reads directly, as they may be highly similar to gene
sequence fragments or contain characteristic protein domains for recognition. As
easy as it sounds, functional profiling of metagenomes remains challenging. One of
the fundamental difficulties is that metagenomic sequences can be highly divergent
in comparison to genes and proteins currently identified [64]. Therefore, profiling
tools that rely on sequence similarity are subject to a tough dilemma between
sensitivity and specificity. Another difficulty is that short sequencing reads may not
contain sufficient information for us to accurately infer their functions. Therefore,
increasing the number of annotated reads and improving the annotation accuracy
remain top challenges for tools in development for functional profiling [65].

Recently, a lot of effort has been devoted to creating an accurate knowledge
base of metagenomic functions and developing reliable and scalable profiling tools.
These two types of efforts are tightly coupled, and in most cases, the choice of
which database to profile against also decides which profiling software/tool should
be used.

As of now, various databases have been constructed, and they represent different
resolutions of metagenomic function. For example, NCBIs RefSeq database [66]
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and the UniProt database [67] are two of the largest reference sequence collections,
both containing over 100 million annotated protein sequences. When provided
with a reference database as comprehensive as these two, it is more likely to find
annotated proteins that share high sequence similarity to an unknown read. However,
one downside of big databases is that most of the “annotated” proteins in these
databases were annotated automatically, i.e., the reference itself is subject to error.
In many cases, these reference databases are adequate for profiling metagenomes
and discovering significant changes between profiles. In other cases, however, one
can opt for a reduced database with higher credibility, such as the Swiss-Prot
database [68] which contains only a half-million annotated proteins but is manually
curated and reviewed. There are also other reduced databases focusing on specific
metagenomes (such as the UniMES database that hosts proteins inferred from
environmental metagenomes) or datasets generated from specific metagenomic
studies that can be used as reference databases of related metagenomes (such as
the functional profiles generated from the Tara oceans project [69] of global ocean
microbiomes and profiles generated from the Human Microbiome Project [70]).

As previously mentioned, the largest databases now contain up to 100 million
annotated proteins. Although we may be able to annotate metagenomic reads with
these proteins, it is not easy to interpret and understand a metagenomic profile
without summarizing similar or relevant protein functions into groups. The gene
ontology database is one of the many databases that strive to address this problem
[71]. It annotates reference proteins with a carefully standardized vocabulary
(called GO terms) and constructs a comprehensive relationship network between
GO terms from the molecular level to larger pathways, as well as cellular and
organismal-level systems. Therefore, we can use GO terms to profile metagenomes
at molecular, pathway, or cellular levels. Besides gene ontology, several databases
also summarize protein annotation into groups or hierarchical groups, such as the
COG/EggNOG categorizations [72, 73], the KEGG pathways [74, 75], the MetaCyc
pathways, and the SEED subsystems [76, 77]. The COG/EggNOG was generated
by grouping orthologous proteins from numerous organisms into clusters, whereas
KEGG, MetaCyc, and SEED group (or related) proteins are based on their related
metabolic roles.

Annotating metagenomic reads using these databases – either large databases
or reduced ones – relies on sequence similarity with reference proteins. Therefore,
alignment-based methods such as BLAST search are often used for the functional
profiling [78]. Additionally, numerous software tools were developed to make
protein alignment and hence functional profiling computationally efficient. Besides
individual tools, several large-scale pipelines have also been developed to annotate
metagenomic data against multiple databases at once, such as IMG/M [79, 80],
MG-RAST [81], MEGAN [82], and HUMAnN [83]. These pipelines stitch together
multiple bioinformatics steps from raw metagenomic reads to functional profiling,
making it easier for the user to interpret and compare the functional potential of
different microbial communities.

Although proteins with similar functions may have evolved and become highly
divergent in terms of nucleotide sequences, the protein domains they contain are
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more conserved and may function independently from the rest of the protein.
Therefore, grouping proteins based upon their functional protein domains is yet
another way of summarizing different protein sequences into a manageable profile.
One example of such an approach is Pfam [84], which is a collection of protein
sequence alignments and hidden Markov models (HMMs) and provides a good
repository for identifying protein families, domains, and repeats. SMART is another
example of a protein domain database, which is abundant with domains in signaling,
extracellular, and chromatin-associated proteins. Other protein domain databases
commonly used are PROSITE [85], PANTHER [86], HAMAP [87], ProDom [88],
etc. Although each of these databases can be acquired separately and many of
them have specific software that can profile metagenomes against it (such as
HMMER for Pfam, ScanProsite for PROSITE, and HAMAP-Scan for HAMAP),
it is worth mentioning that InterPro [89] has combined signatures from all of the
aforementioned domain databases, as well as several others, into a single searchable
resource for functional profiling. Therefore, InterProScan (developed for InterPro)
can be a very handy software package to scan metagenomic reads against most
domain databases.

2.4 Normalization

After sequencing DNA from microbial communities of interest and determining the
abundances of genomes or genes present in the community, the next step is to per-
form comparisons between samples. However, to make these comparisons requires
that the abundances first be normalized because raw metagenomic abundances
fail to accurately represent the true configuration of the taxonomic community.
Simply put, in a given sample from an environment of interest, the total number
of sequenced reads does not accurately reflect the true amount of DNA present in
the environment. This is primarily due to study-level variation in sample collection,
DNA extraction, library preparation, and sequencing depth [90]. Obtaining true
“absolute abundance” cannot be achieved with sequencing data alone; for example,
quantitative PCR would have to be performed in tandem [90]. Thus, differences in
library size is often mitigated by calculating relative abundances where each count
is divided by the total abundance from its corresponding sample [91]. Specifically,
given a vector of J raw abundances from sample i:

[
xi,1, xi,2, . . . , xi,J

]
(1)

the relative abundance for raw abundance j in sample i is given by

x∗
i,j = xi,j∑

j xi,j

(2)
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However, this approach is considered inappropriate [92]: dividing a raw abundance
by its sample’s sum constrains it to the unit simplex (all values for that sample must
sum to 1), thereby rendering the data compositional [93]. Increases in any gene
or genomes abundance is coupled with a corresponding decrease in the relative
abundance of all other genes or genomes. In other words, while the absolute
abundance of a particular taxon may be constant between two communities, their
relative abundances will be different if the abundances of other taxa differ. This
complicates interpretability and introduces spurious correlations. Thus, techniques
such as linear regression and Pearson’s correlation are no longer appropriate
[94, 95]. A better alternative is to perform a centered log-ratio transformation (CLR)
[96]:

x∗
i,j = log

xi,j

gi

(3)

where gi is the geometric mean for sample i given by

gi = J
√

xi,1xi,2 · · · xi,J (4)

The CLR is free of the compositional artifacts described above, but is limited by
a singular covariance matrix, which may limit its use in downstream modeling
approaches [93]. In addition, sparse abundance data further complicates calculating
the CLR due to a zero denominator and the calculation being done in log space. This
necessitates stringent filtering or, more commonly, the addition of small non-zero
values (pseudo-counts), which may introduce bias [97]. Also, if the pseudo-count
is set to 1 and the dataset is very sparse, then each raw abundance will be divided
by a geometric mean close to 1, drastically dampening any normalization effect,
and use of smaller pseudo-counts does not remedy the situation [98]. Recent work
has suggested using values based on percentiles in place of the geometric mean,
but whether this approach is robust to highly sparse datasets is currently unknown
[92, 98].

Silverman et al. [93] has introduced a phylogeny-based normalization approach
(PhILR) that utilizes the isometric log-ratio transformation (ILR), which, unlike
the CLR, returns an invertible covariance matrix. The ILR scales CLR transformed
abundances by taxa-level weights p and a weight matrix ψ given by the binary
partitioning of the phylogenetic tree:

x∗
i,j = CLR(xi,j )diag(p)ψT (5)

The taxa-level weighting allows for soft-thresholding of low-abundance taxa and
may dampen the bias resulting from use of a pseudo-count.

In addition to differences in sample read depth, there remain other potential
biases – most notably from biological sources. These include a gene or genome’s
mappability and length. First, relative abundances are often overestimated since
metagenomes are represented as the proportion of mapped reads present in the
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sample, and this ignores the variability of unmapped reads stemming from novel
taxa or genes. Second, the probability of sequencing a read is a function of the
length of the gene or genome from which the read originated. Correcting for gene-
length permits gene-to-gene comparisons and is possible for well-described genes
where the gene length is available; however, performing a genome-length correction
is impractical due to the degree of diversity within a metagenome and the variability
in genome lengths [90].

Accurately estimating the relative abundances of taxa in a metagenome can be
accomplished via marker gene approaches, which circumvent issues with genome
size since the marker genes themselves are well-characterized [90]. Marker gene
approaches include MetaPhlAn [50], MetaPhyler [51], and MicrobeCensus [53].
Recent work has focused on calculating average genomic copy number, which
corrects for the biases stemming from average genome size, genome mappability,
and species richness. One approach, called MUSiCC, utilizes the median abundance
of universal single-copy genes to normalize gene relative abundances. It is currently,
however, only applicable to KEGG annotated data [91].

3 Comparative Analysis

3.1 Diversity Metrics and Distances

β-diversity allows us to examine the similarities and dissimilarities between multi-
ple samples in a metagenomic study. Microbial ecologists begin by first computing
a pair-wise distance matrix, D ∈ R

n×n+ , where entry (i, j) is the distance between
sample i and j with i, j ∈ [n]. One of the most important steps in this part of
the analysis is the selection of the distance matrix. In general, microbial ecologists
rarely, if ever, use the standard Euclidean distance to compare samples; rather, they
use distances that are based on set theory or a distance between distributions.

The Jaccard index is a simple measure to determine the dissimilarity based solely
on the presence or absence of a taxon in two samples. The index is given by

DJAC(Xi,Xj ) = 1 − |Xi ∩ Xj |
|Xi ∪ Xj | (6)

where Xi and Xj represent a set of metagenomic features in sample i and j ,
respectively. One of the drawbacks to the Jaccard index is that it does not account
for the magnitude of taxa presence, rather it only identifies whether the taxa were
present in a sample. Bray-Curtis is another metric which, unlike the Jaccard index,
has the abundances incorporated into the calculation. Formally, the Bray-Curtis
dissimilarity is given by
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DBC(Xi,Xj ) = 2Cij

Si + Sj

(7)

where Si and Sj are the total number of taxa counted at both sites and Cij is the sum
of the lesser value for only those species in common between samples. Note that
because the triangle inequality does not hold, Bray-Curtis is a dissimilarity metric
and not a distance metric.

The Hellinger distance is the distance between two probability distributions, and
it has been used occasionally in microbial ecology. Also, similar to Jaccard and
Bray-Curtis, the Hellinger distance is bounded. Let P := {pj : j ∈ [n]} and Q :=
{qj : j ∈ [n]} be the probability distributions over two different samples that are
represented by n taxa. The Hellinger distance is defined as

DHEL(P,Q) = 1√
2
‖√Q − √

P‖2 (8)

where ‖ · ‖2 is the �2-norm.
The aforementioned distances can all be found in traditional mathematical

literature; however, given that microbial ecologists are using β-diversity in their
studies, it should be the case that the distance measure being used in the analysis
has some biological connection. The unique fraction metric (UniFrac) is perhaps
the most widely used measure of distance in microbial ecology [99, 100]. UniFrac
was proposed to measure the phylogenetic difference between microbial commu-
nities, as other measures such as Bray-Curtis, Hellinger, and Jaccard do not. The
unweighted version of UniFrac, like the Jaccard index, only deals with the presence
or absence of taxa. Unweighted UniFrac is implemented as follows: consider that
you are provided two samples A and B, which are made up of metagenomic
sequences, and build a phylogenetic tree using all available reads (see Zvelebi and
Baum [101]). Color all the branches of the tree red where a path between two
sequences in A exists, and perform the same operation for B but using a different
color (e.g., blue). If a branch is colored both red and blue, then it is marked gray. The
UniFrac distance is the ratio of the number of branches in the tree that are unique
to either A or B to the total number of branches in the tree. Weighted UniFrac
takes the concept of using this ratio to incorporate the frequency of the reads in the
calculation.

3.2 Feature Representation and Dimensionality Reduction

Metagenomic datasets are often made up of thousands of features that represent
abundances (i.e., the relative proportion of a protein family), and these datasets
frequently have more features than the number of samples. A dataset with more fea-
tures than samples is a challenging problem because the system is underdetermined.
Furthermore, many of these features are often uncorrelated with sample data or
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even redundant with each other. For example, consider a metagenomic dataset that
is being used to find the taxa that favor a high saline environment. This dataset has
50 samples from both a high and low saline environment, and each sample is made
up of 5000 taxa. We refer to the high and low saline environments as the data that
describe the sample classes. Feature selection and dimensionality reduction allow us
to (1) represent these samples by either the bacteria that are relevant to differentiate
between high and low environments and (2) visualize the 100 samples in a 2-D or
3-D space, respectively.

Feature selection is the process of identifying a subset of features that are relevant
and possibly non-redundant with the class. This feature subset allows metagenomic
research to identify the informative variables in a dataset, such that there is still
significant predictive power in the reduced set. It is important to know that the
feature subset has variables that still have physical meaning (e.g., bacteria, protein
family, etc.). In contrast, feature extraction is an approach to transform the data into
a new (lower) dimensional space, and the new features are typically combinations of
all the other features; however, these new features no longer have physical meaning.

3.2.1 Feature Selection

Feature selection plays a central role in nearly all tasks of the data analysis;
however, many popular feature selection algorithms do not scale well with a
large metagenomic dataset. Therefore, computationally cheap methods are used to
remove so-called low zero variance metagenomic features. This low zero variance
is not the best method to use in every situation; however, it is a good place to start
to remove complexity when faced with a high degree of dimensionality in the data.
Related methods exist in information theory (i.e., measuring features for the amount
of mutual information between a metagenomic feature and the class [102]). The
objective is to eliminate metagenomic features with low mutual information and not
redundant with the other features.

More sophisticated methods exist for performing feature selection, including
ones utilizing more than just variance, in addition to other probabilistic quantities.
For example, the Relief algorithm examines paired samples (based on Euclidean
distance) and weights features based on the samples’ proximity in Euclidean space.
It updates a weight matrix by determining if the features belong to the same or
different classes [103]. Correlation-based feature selection (CFS) identifies features
that have a high correlation with the supplied class of the sample but low correlation
with other features while being less computationally intensive than Relief [104].
Both of these approaches are known as filter-based feature selection since they are
classifier independent. Brown et al. provide a comprehensive review of information-
theoretic filter feature selection algorithms [105].

In addition to filter-based approaches, embedded feature selection algorithms
jointly optimize the feature selector and classifier. The least absolute shrinkage and
selection operator (Lasso) is an approach to feature selection that optimizes a model
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for linear regression [106]. However, unlike standard linear regression, Lasso adds
a penalty on the �1-norm of the linear model. This penalty, which is shown in (9),
forces the solution to be sparse (i.e., many entries in θ are zero), thus performing
feature selection for the linear model θTx. Lasso is formally given by

θ∗ = arg min
θ∈Rp

1

2n

n∑

i=1

(yi − θTxi )
2 + λ

p∑

j=1

|θj | (9)

where θ are the parameters of the linear model, xi is the metagenomic feature
vector, yi is the class (±1) or dependent variable, n is the number of samples, and
p is the total number of metagenomic features. Bates and Tibshirani have recently
adapted Lasso for compositional data, using log ratios as described above for CLR
normalization [107]:

θ∗ = arg min
θ∈Rp

1

2

n∑

i=1

⎛

⎝yi − μ −
∑

1≤j<k≤p

θj,k log
xi,j

xi,k

⎞

⎠

2

+ λ

p∑

j=1

|θj | (10)

The log-ratio Lasso differs from (9) in that it aims to detect models composed
of a sparse subset of ratios as opposed to models composed of a sparse subset
of regression coefficients. Ditzler et al. have implemented an open-source feature
selection software tool for analyzing metagenomic and 16S datasets [108]. Lasso
and other sparse regression techniques are easily implemented in glmnet, available
in R, MATLAB, and Python.

3.2.2 Feature Extraction

Feature selection reduces the set of metagenomic features to a subset that is infor-
mative – potentially non-redundant – and still maintains a physical interpretation.
Feature extraction is a technique for dimensionality reduction that embeds the
original set of features in a lower-dimensional space (e.g., apply a linear projection
of the metagenomic data vectors from R

p to R
2 where p 	 2). Principal component

analysis (PCA) is one of the more popular projections for feature extraction. In
PCA, we seek to represent the p-dimensional data in a lower-dimensional space
that maximizes the variance of the projections. It turns out these projections are
the eigenvectors of the covariance matrix of the data that correspond to the largest
eigenvalues. Note that PCA does not take the class into account when the projections
are calculated. Sparse PCA can also be performed for feature extraction [109],
where the difference between PCA is that the projection is made by adding a
sparsity constraint on the input metagenomic features. Note that this form of feature
extraction will result in a new set features that have a high variance; however,
these features do not have any biological meaning because the new feature set
is made up of linear combinations of all other features. There is also supervised
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principal component analysis (SPCA) that takes the classes into account to find
the greatest degree of variance between classifications [110]. Linear discriminant
analysis (LDA) is another linear transformation that reduces the dimensionality of
the data that uses supervised information. The dimensionality of the reduced space
is limited C − 1, where C is the number of classes, whereas supervised PCA does
not have this limitation. LDA is also difficult to use on many metagenomic datasets
because it suffers from the small sample size problem – thus, making supervised
PCA a more appropriate feature extraction technique that takes into account the
class separability as well.

Other related techniques include independent component analysis (ICA), non-
negative matrix factorization (NMF), and canonical correlation analysis (CCA)
[111]. ICA performs a linear transformation that, unlike PCA, which finds com-
ponents that maximize the variance and identifies rotations that result in new,
transformed features that are mutually statistically independent. In other words, each
pair of features in this new feature space will have zero mutual information. NMF
approximates a feature matrix X by X ≈ WH , where each value xi,j is assumed to
be Poisson distributed; hence, NMF is appropriate for nonnegative abundance data.
CCA is another feature extraction technique. It uses a linear projection on a subset
of features, then uses the correlation between the projections [112]. CCA can be
applied to both continuous and discrete data, which is beneficial for analyzing not
only the metagenomic features from abundance data but also the data associated
with the samples. Finally, one of the advantages to CCA, as well as PCA, is that the
projections can be computed efficiently using singular value decomposition (SVD).

Many datasets, even those in metagenomics, may not work well for data that
lie on a nonlinear lower-dimensional manifold. t-Distributed Stochastic Neighbor
Embedding (t-SNE) is a probabilistic nonlinear dimensionality reduction technique.
It represents the similarity between any two points xi and xj as the conditional
probability that xi and xj are neighbors, which is Gaussian distributed. It then
attempts to learn a lower-dimensional embedding, where the similarities are now
heavy tailed – that is, t-distributed. The Kullback-Leibler divergence between the
estimated similarities in high- and low-dimensional space is minimized [113].
Visualizing the data with t-SNE can result in compact groups of classes (influenced
by adjusted the “perplexity” parameter) in the lower-dimensional embedding. While
the nonlinear embedding can be attractive to many metagenomic data analysis
problems, there remain some drawbacks to t-SNE. Namely, t-SNE has a poor space
complexity that can require a significant amount of memory to find the embedding.

3.2.3 Distance-Based Approaches for Feature Extraction

The remaining approaches are common in the statistical ecology and sequencing
domains and are sometimes referred to as “unconstrained ordination” techniques
(note that PCA described above can also be described as unconstrained ordi-
nation). These include principal coordinates analysis (PCoA) [114], otherwise
known as metric multidimensional scaling (MDS), correspondence analysis (CA,
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or reciprocal averaging) [115], and nonmetric multidimensional scaling (NMDS)
[116, 117]. PCoA is simply an eigenvalue decomposition of a distance matrix. If
the chosen distance metric is Euclidean, then PCA and PCoA are equivalent, in
which case the components are linear combinations of the original features. With
an alternative metric, then the principal coordinates are governed by the distance
function. CA aims to maximize the correspondence between column and row scores
– or, equivalently, sample and feature scores – in a feature matrix with nonnegative
elements. This approach is analogous to PCoA with χ2 distance, a distance metric
used to extract relationships between rows and columns. Lastly, NMDS maximizes
the rank order between features and hence is less concerned with the underlying
pair-wise distances [118].

3.2.4 Neural Network Approaches for Feature Extraction

Neural networks (NNs) are a popular machine learning model and have recently
garnered heightened interest in the sequencing domains [119]. Essentially, NNs
perform nonlinear adaptive regression. Unsupervised approaches in particular have
garnered interest in their ability to extract meaningful features from unlabeled
data. One architecture in particular is the denoising autoencoder (DAE), which
has recently been shown to perform well when applied to high-dimensional gene
expression datasets [120, 121]. Given an input matrix X, the DAE attempts to
recover X after X has been corrupted with noise (Fig. 3). The noise enables the DAE
to learn robust, potentially generalizable features while preventing it from simply
learning the identity function.

Another NN approach involves applying word embeddings, a widely used
strategy in the natural language processing domain, directly to sequencing reads.
The word2vec model is one of the more popular word embedding models. It gives
words continuous vector representation in a lower-dimensional space based on the
frequency of pair co-occurrence in a context window of fixed length [122]. We can
understand it as mapping each word to a point in a continuous high-dimensional
space, such that the points of words with similar semantic meaning are closer to
each other in terms of, for example, Euclidean distance. Ng utilized Skip-Gram
word2vec to embed short DNA k-mers [123]. He demonstrated that the embedding
space extracts useful properties. Specifically, k-mer pairs with high cosine similarity
in the embedding space were consistent with high-scoring pairs identified via global
sequence alignment.

Word2vec is a shallow, fully connected NN with one hidden layer (Fig. 4). The
input and output layer have the same number of nodes which is the number of words
in the vocabulary. The number of nodes in the hidden layer is the dimensionality of
the embedding space – that is, the size of the reduced feature space. The first step
is converting each word into a one-hot vector, thereby giving each word a unique
index. Then, training can be performed in one of two varieties: (1) the Skip-Gram
model, which uses a word to predict its context (i.e., neighboring words) and (2)
the continuous bag-of-words model (CBOW), which uses the context to predict a
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Fig. 3 Denoising autoencoder, where the input data x is corrupted with noise, producing x̃, which
is then encoded into a lower-dimensional hidden layer. The hidden layer nodes are then decoded
to produce x̂, which has the same dimensionality as x. The distance between x and x̂ is minimized
such that the hidden layer is composed of features (nodes) capable of reconstructing x despite the
addition of noise

Fig. 4 (left) Neural network architecture for Skip-Graham word2vec. The training process
requires the NN to predict the target word given the neighborhood. Words with similar context
will activate similar nodes in the hidden layer. For the center k-mer “CGCTCA” and one of its
neighbors “ATACGC,” the corresponding node in the input and output layer is shown in red.
Assuming “ATACGC” is the i-th word in the vocabulary, “CGCTCA” is then the i + 1-th word.
The weights in blue connect between the input and hidden layers for the input word “ATACGC,”
i.e., the i-th column in weight matrix V . The weights in yellow connect the hidden and output
layers for the output word “CGCTCA,” i.e., the i + 1-th row of weight matrix U . (right) 6-mer
neighborhood for word2vec training
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word [123]. Because Skip-Gram does not average context vectors, but updates the
weights for each word in the context separately, it can learn better representations
for rare words compared to CBOW.

In the training process, the model will learn two vectors for each word wi : (1) the
i-th column of weight matrix V between the input and hidden layers and (2) the i-th
row of weight matrix U between the hidden and output layers. We will refer to them
as the input and output word vectors, respectively. The matrix product of V and
UT is the co-occurrence matrix. Levy and Goldberg described the word embedding
as a matrix factorization of the co-occurrence matrix [124]. They also showed that
a carefully constructed matrix factorization can produce word embeddings similar
in quality to word2vec [125]. Also, Landgraf and Bellay showed that Skip-Gram
word2vec is equivalent to weighted logistic PCA [126].

Training can be costly in terms of time and memory when the vocabulary is large.
To accelerate the training process, Mikolov et al. utilized negative sampling [127].
Instead of updating the entire vocabulary each pass, they randomly sampled a subset
of negative samples along with the context words to form a smaller vocabulary. Only
the subset’s weights are updated during a given pass. Another approach replaces the
output weight matrix U with a Huffman tree [128].

4 Diversity Metrics and Constrained Ordination

After taxonomic or functional annotation has been performed, investigators are
faced with the difficulty of quantitatively identifying and describing gradients,
patterns, and variability within the dataset, particularly between individual samples
or sample groups. Such analyses require simultaneous consideration of many, some-
times hundreds or thousands, distinct species or functions for each sample within
the dataset. This effort is often further complicated by researchers who wish to
include in their analysis information about the samples themselves or the sites from
which they were collected, such as nutrient concentrations or availability, sample
site location, host species (from which the samples were collected), vegetation
composition or coverage, or watershed membership. The high degree of correlation
expected between microbial community members and their environment requires
the use of multivariate analytical methodologies.

Ordination is one of the most common analytical techniques used to explore the
high-dimensional structure of microbial and molecular ecology datasets by using the
distance matrix containing the similarity between metagenomic samples. Generally
speaking, these methods attempt to identify the major ecological gradients or
trends in high-dimensional datasets. Ordination methods can be largely categorized
into two classes based upon the nature of the data to be used or the intent of
the researcher. Unconstrained ordination methods (described above) employ only
community data (i.e., the gene or taxon abundance table) in their calculations.
Because unconstrained ordination relies only on species or functional abundances,
the results expose or reveal the largest, and potentially most distinctive, gradients
within the data. These methods are often used as a form of exploratory data
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analysis, where investigators may not possess well-conceptualized hypotheses or
are interested in identifying unexpected gradients, patterns, or relationships between
taxa, functions, or sample groups.

Constrained ordination methods exploit information about the samples them-
selves, or their environment, to hopefully explain the source of variation observed
within the community dataset. This type of ordination is carried out by constraining
the ordination object to be optimally correlated to the values of one or more pre-
dictor variables related to an ecologically relevant hypothesis under investigation.
Constrained ordination methods can be viewed as analogs of regression models
where data describing samples (e.g., sample types, source location, environmental
data, etc.) are used directly to describe and subsequently interpret the structure of
microbial communities. These methods are commonly used to directly test predeter-
mined hypotheses, such as the effect of nutrient gradients or the impact of ecological
disturbances. As with unconstrained ordination, there are many options available
for carrying out constrained ordination. Some of the most commonly used are
redundancy analysis (RDA) [129], distance-based redundancy analysis (db-RDA)
[130], canonical correspondence analysis (CCA, which is distinct from canonical
correlation analysis described above), and detrended canonical correspondence
analysis (DCCA) [131].

With proper caution, constrained ordination methods may also be used during
data exploration efforts, especially at the beginning of longer-term or larger-
scale studies. Within this context, initial community results can be subjected to
constrained ordination with explanatory variables being selected using stepwise
variable selection methods such as those suggested by Blanchet et al. [132]. The
resulting explanatory variable subset can be compared with results from other
data exploration methods such as the BIOENV procedure proposed by Clarke
and Ainsworth [133]. The end goal of these efforts is to enable the researcher to
determine what explanatory variables may be the most important and will require
further study, identify gaps in data collection, and improve or clarify the hypotheses
driving the current study.

Ordination has traditionally been applied to manually collected taxa counts or
coverage data as well as data describing environmental conditions. The emergence
of sequencing technologies has led to the adoption of ordination to carry out similar
analyses with both data resulting from both targeted amplicon and metagenomic
sequencing. Metagenomic sequencing results are often annotated for both their
taxonomic and functional content, providing investigators with two corresponding
sources of information and reducing reliance on a single locus for taxonomic
annotation and diversity estimates. In some cases side-by-side comparison of results
obtained from ordinating the taxonomic and functional annotations have exposed
interesting results [134].

Ordination provides a powerful way to probe large complex datasets, but as with
any computational or statistical approach, an acute understanding is prerequisite
for proper application and interpretation of results. Many decisions must be made
regarding the proper choice of ordination method, the distance measures used (if
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any), whether or not the data should be transformed prior to calculation, as well as
how to handle sample-level data. Further confusion may arise from the periodic
development of new, perhaps better, ordination approaches that build upon the
methods listed above. Thorough derivations and descriptions of ordination and
clustering techniques are available in several well-written books [118, 135, 136]
and review articles [137, 138], which may help educate investigators and students
about appropriate approaches for answering ecological questions using ordination
methods.

5 Statistical Inference

5.1 Multilevel Regression

Researchers may be interested in the relationship between a univariate statistic
describing the taxonomic composition of a community (e.g., α-diversity, species
richness, or evenness) and sample-level information such as site, temperature, time,
or chemical concentration. Elucidating these relationships can be accomplished via
linear regression:

y ∼ N(Xβ, σ 2I ) (11)

where y is a vector of length n, X is an n × p matrix of p sample-level covariates
including an intercept term, β is a vector of regression coefficients of length p,
and I is an n × n identity matrix [139]. The coefficients β and variance σ 2 can be
estimated via least squares, where β̂ represents the association between y and X.

Often, however, complex study designs necessitate the use of multilevel regres-
sion models, often referred to as mixed-effects models. As an example, suppose
metagenomic samples are taken from ten sites, and α-diversity varies depending
on which site the sample originated. One approach to model this data may involve
coding each site with dummy variables, setting one arbitrary site as a “reference”
level. The cost here is nine degrees of freedom, and we are limited in our ability
to interpret the regression coefficients, since they can only be interpreted with
respect to the reference level [140]. One can imagine that with even more sites,
this approach becomes less practical.

An alternative strategy involves letting the intercept vary as a function of site (a
random intercept model):

yn = μ + αsite[n] + εn (12)

αsite ∼ N(θ, τ 2) (13)

ε ∼ N(0, σ 2) (14)
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θ, τ2

αsite[1] αsite[2] · · · αsite[n−1] αsite[n]

Y1 Y2 · · · Yn−1 Yn

σ2

Fig. 5 Multilevel representation of sample-level means [141]. Each sample Yn is influenced by its
own between-site mean αsite[n]. Each of these between-site means are generated by the same normal
prior distribution with mean θ and variance τ 2. Within-site variability in Y is governed by σ 2. For
sites with small sample sizes, αsite[n] will fall closer to θ , whereas sites with larger sample sizes
will be represented more by their site-specific average (https://slack-files.com/T1VNV2ABW-
F9YTS2K35-a06828b680)

where yn is the alpha diversity for sample n, μ is the intercept, αsite[n] is the site-
specific intercept for sample n, θ is the mean of site-specific intercepts, and τ 2 is
their variance. Note that θ and τ 2 do not vary as a function of site. Figure 5 shows
how the group-level means, αsite, distribute over the N samples. Let’s now assume
we believed that α-diversity varied as a function of temperature, but the degree of the
relationship depended on the site. Here, we can let the slope between temperature
and α-diversity vary:

yn = μ + αsite × temp + εn (15)

As more data become available, and study designs necessitate more complicated
regression models, we can combine random effects and build complex multilevel
regression models to help describe our community of interest. Such an approach
is warranted because it allows an investigator to estimate the degree that specific
effects vary by group (such as site) and not only with respect to a reference level.
Moreover, because group-level effects share a common prior, a multilevel model
can utilize group-level averages to “partially pool” information, thereby dampening
the noisy contributions of underpowered group levels [139].

Multilevel models can easily be fit via the R package rstanarm. More sophisti-
cated model designs can be implemented in Stan [142], which has interfaces in a
variety of programming languages including R, Python, MATLAB, and Julia.

https://slack-files.com/T1VNV2ABW-F9YTS2K35-a06828b680
https://slack-files.com/T1VNV2ABW-F9YTS2K35-a06828b680
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5.2 Multivariate Analysis

With univariate dependent variables, the regression approaches described above
are an obvious choice. If, instead, we are interested in measuring the relationship
between sample-level covariates and β-diversity, then we can turn to permutational
MANOVA, which performs an analysis of variance on a distance matrix using
sample-level covariates as predictors [143].

5.3 Differential Abundance Analysis

It is often of interest to detect which genes or taxa best differentiate two or more
sample classes. A straightforward approach involves performing hypothesis testing
for each variable in an abundance table and then correcting for the false discovery
rate via the Benjamini-Hochberg procedure. Such an approach is limited in that it
assumes specific assumptions are met prior to performing the analysis, which is
typically not the case. These include assumptions regarding normality and mean-
variance relationships.

More sophisticated strategies have been developed and applied to sequencing
data of similar structure: edgeR and VOOM [144] for gene expression data,
DESeq2 [145] for gene expression and 16S amplicon survey data [92], and
MetagenomeSeq [146] also for 16S amplicon survey data. MetagenomeSeq, for
example, applies either a zero-inflated Gaussian mixture model or a zero-inflated
log-normal model to each feature separately. Account for zero inflation is thought
to prevent overdispersed fits and also mitigate the detrimental effects of highly
sparse sequencing data. DESeq2, on the other hand, first performs a variance-
stabilization transformation, followed by fitting a negative binomial generalized
linear model (GLM). For metagenomic data, under the right circumstances such
that the abundance table consists of counts and hence has yet to be normalized in
terms of sample library size imbalance, these approaches may prove viable. Still,
however, they were developed with specific distributional assumptions in mind.
Considering the plethora of normalization strategies available for metagenomic data,
future work is necessary to demonstrate whether readily used differential abundance
strategies remain appropriate after a particular normalization is performed and
which metagenomic normalization procedures work well in tandem with which
differential abundance strategies.

Approaches nevertheless exist that were designed with metagenomic data in
mind. One such approach, LEfSe, performs the nonparametric Kruskal-Wallis sum-
rank test to identify significant differences in abundances between genes or taxa
belonging to a class of interest [147]. The Wilcoxon rank sum then disentangles
pair-wise differences between sample subclasses. Linear discriminant analysis is
applied last to estimate the effect size of the statistically significant features.
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Johnsson et al. applied various differential abundance methods to metagenomic
data and evaluated their performance in terms of statistical power, control of
the false discovery rate, and uniformity of p-values given the null hypothesis
[148]. They found that GLM-based models that combat potential overdispersion
perform best. These include DESeq2, edgeR, and an overdispersed Poisson GLM.
MetagenomeSeq generally performed well but was found to be inferior to simply
performing t-tests to log-transformed features, suggesting that the zero-inflation
mixture components have a negligible impact. Also, it was prone to highly biased
p-values and consequently type 1 error. Also of note was that performing t-tests on
square root transformed features was superior to utilizing non-parametric Wilcoxon
rank-sum tests, which, as noted above, are used in LEfSe. The authors speculated
this may be due to the latter’s susceptibility to ties. It should be stressed that effect of
different metagenomic-specific normalization approaches on differential abundance
analysis was not explored.

6 Machine Learning and its Application to Metagenomics

6.1 Overview

Machine learning techniques are widely used in different steps in a metagenomic
pipeline. For example, Naive Bayes has been applied for taxonomic classification,
hidden Markov models (HMM) are often used for functional annotation, and
random forest is readily utilized for phenotype prediction. From a research problem
perspective, machine learning techniques are helpful in addressing the following
questions:

• Who are there (what species are in a sample)?
• What are they doing (what functions are in a sample)?
• What can we infer from the sample (what is the state of the host/environment)?

In the following sections, we will talk about machine learning methods and tools
that have been applied to metagenomics.

6.2 A General Machine Learning Review

One of the highly cited definitions of machine learning involves a computer
program that is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E [149]. Experience E usually refers to the
data collected. Task T usually represents the decision or prediction we want to
make. In a metagenomics context, E represents the samples or DNA sequences.
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Machine learning methods can be classified into supervised, semi-supervised, and
unsupervised learning approaches based on their dependency of labeled data.
Supervised learning approaches (classification methods) require a training phase
that utilizes the samples and their labels to minimize the cost function of the
classifier. Unsupervised learning (clustering) methods, on the other hand, use a
distance measure to group samples into clusters. Finally, semi-supervised learning
methods act as a compromise between the two. They first use a subset of training
data to train the classifier and then use unlabeled examples to improve performance.
Table 2 lists the machine learning methods listed throughout this chapter.

In the context of metagenomics, machine learning techniques can be classified
based on their application. The following sections will discuss the machine learning
techniques that have been implemented in taxonomic classification, DNA binning,
functional annotation, and phenotype prediction.

6.3 Taxonomic Classification and DNA Binning

One of the main challenges in metagenomics is the identification of microorganisms
in clinical and environmental samples [150]. Taxonomic classification or DNA bin-
ning are helpful for researchers to determine the composition of their metagenomic
samples. Taxonomic classification is a supervised learning problem, whereas DNA
binning has traditionally been unsupervised, but could also be semi-supervised
[151].

6.3.1 Naive Bayesian Classifier

A naive Bayes classifier (NBC) is a type of probabilistic classifier that exploits
Bayes rule to perform classification. Naive refers to its assumption that features
are independent from each other. Here X = (x1, x2, . . . , xn) is an observation with
n features. The probability of X coming from class k is

p(Ck |x1, x2, . . . , xn) = p(Ck)p(X|Ck)

p(X)
= p(Ck)p(x1|Ck)p(x2|Ck) · · · p(xn|Ck)

∑|C|
k=1 p(Ck)p(x1|Ck)p(x2|Ck) · · · p(xn|Ck)

(16)

So, the estimated class is

ĉ = arg max
k∈1,...,K

p(Ck)

n∏

i=1

p(xi |Ck) (17)

NBC is easy to implement and has high accuracy when the features are independent.
Rosen et al. proposed a metagenome fragment classification tool using k-mer
frequency profiles [152, 153], which has proven to be fast and accurate when trained
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on large k-mers. Assuming X = [x1, x2, · · · , xn] is a set of k-mers in a sequence,
then, in the training phase, p(xi |Ck) is estimated by the total number of k-mers xi

that occurs in all the training sequences from class Ck . In the testing phase, the taxa
that contains a given query sequence is predicted by the class that maximizes the
posterior probability P(Ck|X).

6.3.2 k-Nearest Neighbors

k-nearest neighbors (k-NN) classifies query samples x0 ∈ Rm based on distance.
Given the labeled data, T = {xi, yi | i ∈ [1, N]}, xi ∈ Rm, a new observation
will be assigned to a class where the majority of the first K nearest labeled samples
originate. The following is the classification workflow for 1-NN and K-NN:

1. 1-NN: (1) find the nearest instance in the training set minxi
(‖xo − xi‖); (2) test

data label is the same as the nearest instance via y0 = yi .
2. K-NN: (1) find the k nearest instances in the training set minx1,··· ,xk

(‖xo − xi‖);
(2) let the k nearest instances vote via y0 = Mode(y1, · · · , yk).

Borozan et al. used K-NN to perform classification in their taxonomic lineage
prediction tool, and they regarded K-NN as one of the simplest and most intuitive
classification algorithms [154].

6.3.3 Clustering

The k-means clustering algorithm is used to partition N observations into k clusters.
The observations’ affiliations are determined by some distance measure, such as
Euclidean distance. Hence, the observations that are close to each other will be
grouped together, and the observations that are distant from each other will be
assigned to different clusters. To converge to an optimum quickly, this clustering
process utilizes an expectation-maximization (EM) procedure. This is an iterative
refinement approach that assigns observations into k clusters by comparing the
distance between the observations and k centroids (usually initialized randomly)
and then updates the centroids with the new cluster assignment until convergence.
The objective function is given by

argmin
C

k∑

i=1

∑

x∈Ci

||x − μi ||2 (18)

Many tools perform DNA binning by clustering sequences based on a predefined
distance metric. Wang et al. used k-means to cluster sequences [155].

An alternative approach, CD-HIT, uses a greedy search algorithm to cluster
the sequences [156]. First, it sorts sequences based on their length. The longest
sequence will be representative of the first cluster formed. Then, the second
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longest sequence is compared to this cluster’s representatives. It will be assigned
to this cluster if the distance between it and the representative is within a user-
selected distance threshold; otherwise, a new cluster will be created and the
sequence becomes its representative. This process will be repeated for all remaining
sequences until all sequences are assigned to either an existing cluster or a newly
created one. In addition to CD-HIT, there are some other sequence clustering tools
such as DNACLUST [157] and UCLUST [158]. These tools can be faster than CD-
HIT under some circumstance. For example, UCLUST, by default, operates in an
inexact mode that reduces the search space by only comparing the sequence to the
representatives from a subset of all clusters.

6.4 Functional Annotation and Prediction

6.4.1 Hidden Markov Model

Hidden Markov models (HMMs) describe a sequential observation and their
underlying latent states. The observed sequence of length L can be described as
x = x1, x2, · · · , xL [159]. Its latent state sequence is y = y1, y2, · · · , yL. Each
symbol xn takes on a finite number of possible values from the set of observations
O = O1,O2, · · · ,ON , and each state yn takes one of the values from the set of
states S = 1, 2, · · · ,M , where N and M denote the number of distinct observations
and states in the model. This model can be described by two matrices, the transition
matrix and the emission matrix. One entry in the transition matrix is the probability
of entering state j in the next time given in state i:

t (i, j) = P(yn+1 = j |yn = i) (19)

One entry in the emission matrix is the probability of observing x given state i:

e(x|i) = P(xn = x|yn = i) (20)

The probability that an HMM will generate an observation x with underlying state
sequence y is [159]:

p(x, y|t, e) = p(x|y, t, e)p(y|t, e) (21)

where,

p(x|y, t, e) = p(x1|y1)p(x2|y2) · · · p(xL|yL) (22)

p(y|t, e) = p(y0)p(y1, y2)p(y2|y3) · · · p(yL−1|yL) (23)

Rho et al. proposed to use HMMs to model nucleotide sequences to predict a given
gene [160].
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6.4.2 Logistic Regression

Logistic regression usually takes real value input and outputs a value between 0 and
1. This is accomplished by the logistic function:

ŷ(x) = 1

1 + e−∑n
i βi ·xi

(24)

where x = [x1, x2, · · · , xn] is an input vector and β = [β1, β2, · · · , βn] are the
weights estimated by the model. Since the output of this function is between 0 and
1, one can consider the output to be the probability of being classified into class C,
i.e., p(y = C|x;β) = 1/1+e−∑n

i βi ·xi . Hence, we can determine the best parameter
β using a maximum likelihood approach:

max
β

L(Y |X;β) (25)

where L(Y |X;β) is the product of the probabilities that all labeled samples get
classified into the correct class, i.e.,

L(Y |X;β) =
n∏

i=1

ŷ(xi)
y(xi)(1 − ŷ(xi))

1−y(xi) (26)

where y(xi) is the true label for sample xi. The optimal parameter to maximize
the likelihood can be found using a gradient descent algorithm, which iteratively
updates the parameters by the estimated derivative of the function given the current
parameter such that the likelihood tends to increase after each update. In the testing
phase, observations xi will be classified into class C if the output ŷ(xi) is greater
than 0.5 or a predefined threshold; otherwise, it will be classified as the alternative
class ¬C.

Noguchi et al. used logistic regression to analyze the GC content of a given
sequence and estimate the mono-codon and di-codon frequencies [161].

6.5 Phenotype Prediction

6.5.1 Random Forest

A decision tree is a supervised learning technique that looks at each feature
individually to make a binary decision, thereby splitting samples into branches. The
information gain is maximized during this process to help the classifier make an
accurate decision. It is widely used because the decision process is interpretable,
and the performance is often promising. Random forest (RF) is an ensemble learning
extension of a decision tree where the decision is made by majority vote of many
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decision trees. Each tree is fit to only a subset of features, forcing the classifier
to learn robust, potentially generalizable subsets of features, particularly when
compared to simpler decision tree approaches. The following is the construction
workflow of random forest [162]:

1. Draw ntree bootstrap samples from the original data.
2. Grow a tree for each bootstrap dataset. At each node of the tree, randomly select

mtry variables for splitting. Grow the tree so that each terminal node has no
fewer than nodesize cases.

3. Aggregate information from the ntree trees for new data prediction such as
majority voting for classification.

4. Compute an out-of-bag (OOB) error rate by using the data not in the bootstrap
sample.

RF has been applied in many metagenomic pipelines to predict phenotype given a
high-dimensional abundance table. It naturally finds useful features and is robust to
overfitting. Additional applications of RF can be found in Chen and Ishwaran [162].

6.5.2 Support Vector Machine

The support vector machine (SVM) finds a hyperplane or a set of hyperplanes that
best separates labeled data in some geometric space. In the testing phase, samples
are assigned to classes based on their location in this space. Normally, the linear
SVM separates the space linearly, but when data are not linearly separable, the
“kernel trick” enables the data to be projected into a higher dimensional space,
thereby potentially rendering the data linearly separable. Hence, the core of the
SVM model is a linear SVM algorithm. The following is an overview of the
application of this model in a binary classification problem. Given some training
data D, a set of n points have the form

D = {
(xi , yi) | xi ∈ R

m, yi ∈ {−1, 1}}n

i=1 (27)

where yi is either 1 or −1, indicating the class to which the point xi belongs. Each xi

is an m-dimensional real vector. We want to find the maximum-margin hyperplane
that divides the points having yi = 1 from those having yi = −1. If the training data
are linearly separable, we can select two hyperplanes that completely separate the
data and then try to maximize the distance between the data and hyperplanes. The
region bounded by them is called “the margin.” These hyperplanes can be described
by the equations

{
ω · x − b = 1

ω · x − b = −1
(28)
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It is an optimization problem to find these two hyperplane. Maximizing the distance
between the data and hyperplane is equivalent to minimizing ||ω||. While ensuring
all positive and negative samples are separated, we have a constraint: ∀(xi , yi) ∈
D, yi(ω · xi − b) ≥ 1. Again, in the testing phase, samples are assigned to classes
by the subspaces segmented by the hyperplanes. Capriotti et al. developed a method
based on kerneled SVMs to predict whether a new phenotype derived from a single
nucleotide polymorphism can be related to a genetic disease in humans [163].

6.5.3 Elastic Net

A sparsity-promoting approach related to Lasso, but more robust for highly
correlated features, is the elastic net (EN) [164]. It has been shown to perform well
in both regression and classification, particularly with high-dimensional data where
the number of features greatly outnumbers the number of samples [165]. Whereas
the Lasso regularization penalty involves the L1-norm, EN compromises between
the L1- and L2-norm (readers may recognize L2-norm penalized regression as ridge
regression). EN is formally given by

θ∗ = arg min
θ∈Rp

1

2

n∑

i=1

(yi − θTxi )
2 + λ

(
1

2
(1 − α)|θ |22 + α|θ |1

)
(29)

where α ∈ [0, 1] controls the relative contributions of the L1- and L2-norms.
Notice that when α = 1, the EN reduces to the Lasso, whereas when α = 0, it
reduces to ridge regression; thus, EN can be considered a generalization of the two
regularization approaches.

7 Discussion and Conclusion

Techniques can generally be broken down into two main categories: (1) techniques
that directly work with DNA/RNA sequences to classify attributes about them
(taxonomy and function) and (2) techniques that facilitate comparative analyses.
Some fundamental preprocessing steps – such as normalization, feature selection,
and feature extraction – can be applied to single samples; however, most of these
preprocessing steps are designed for multiple samples, as most studies use many
samples and are usually limited by cost.

For the sequence identification problems, the longest-standing methods are
those that extend read sequence length and identify its taxonomic origin and
functional annotation. Assembly, with the most successful methods involving de
Bruijn graphs, was one of the first algorithms to be developed because it was
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key in the Human Genome Project (even from the longer Sanger sequencing
reads) [166]. In metagenomics, the problem is more complex since any read can
come from any one of thousands of organisms in a sample, culminating in a
demultiplexing (read binning) step before assembly. Taxonomic/functional binning
and classification, with the rich history of k-mer-based clustering, alignment, and
profile HMMs, have also been extensively studied but are still being investigated for
their extensions to metagenomics (not just annotating whole genomes). The problem
with metagenomic data is mainly that sequences come from a collection of possible
species’ origins and many sequences are from unknown (or not yet sequenced)
species.

Comparative analysis is the most active area of development, notably the rich
areas of statistical inference and machine learning, which are utilized to make cross-
sample and even cross-study comparisons. Early attempts leveraged ordination,
but the substantial growth of the machine learning field has provided researchers
with an immense resource of potential tools, particularly classification algorithms,
allowing one to apply discriminative and generative functions to discern groups of
samples. Moreover, deep neural networks show much promise for learning complex
relationships and hence are areas of active research.

We closed this chapter with a discussion of general machine learning approaches,
since these techniques can be applied to not only sequence identification but also
to comparative analysis and phenotype prediction. Machine learning and statistical
inference can help researchers disentangle the complexity that make other models
with strict assumptions fail. We show examples of where these algorithms have
been applied. Still, when using learning algorithms, one must think about how
much training data is available and whether supervised versus unsupervised learning
is suitable. Also, sometimes there are many confounding factors, where feature
selection or normalization may simplify and denoise the data. If there is inherent
structure in data, hierarchical models which capture this structure should be used.
If prediction is the goal, supervised approaches should be considered. Finally,
no matter what method is used, researchers should be aware of class imbalance
and model overfitting and try to mitigate these effects through carefully designing
training/validation/testing regimes. There are many considerations that researchers
should consider when analyzing complex metagenomic data, and these should be
identified early and examined throughout analyses.

In this book chapter, important techniques in metagenomic analyses are
reviewed. However, good benchmarking data and infrastructure is not available
to ensure that future methods improve upon the state of the art. Therefore, there is
not only much work to be done to improve metagenomic software, but there is need
to standardize the way we assess these methods.
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