Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016

Title

Supplementary Information

Untangling the microbial ecosystem and kinetics in a nitrogen removing photosynthetic high density bioreactor †

Authors

Jacob R. Price^a, Saeed Keshani Langroodi^a, Yemin Lan^b, Jonas M. Becker^c, Wen K. Shieh^d, Gail L. Rosen^e, and Christopher M. Sales^a*

Footnotes

^a Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States

^b School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141

Chestnut Street, Philadelphia, Pennsylvania 19104, United States

^c Department of Biomimetics, Hochschule Bremen, Neustadtswall 30, D-28199 Bremen, Germany

^d Chemical and Biomolecular Engineering, The University of Pennsylvania, 220 S. 33rd Street,

Philadelphia, Pennsylvania 19104, United States

^e Electrical and Computer Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,

Pennsylvania 19104, United States

* Corresponding Author. E-mail: <u>chris.sales@drexel.edu</u>. Phone: (215) 895-2155. Fax: (215) 895-1363.

† Electronic supplementary information (ESI) available.

Reactor Description and Operation

Figure S7 depicts the architecture of an HDBR system. The reactor (Reactor) was constructed with the addition of two ports (hose barbs) to a 1000 mL graduated cylinder, one at the 100 mL level and the other at the 1000 mL level. Reactor fluid is pumped through the bottom port and flows upwards through the reactor. Fluid leaving through the top port is directed to the recycle vessel (RV). The RV was constructed with the addition of two ports (hose barbs) to a 600 mL beaker, one at its base and the other at the 500 mL level. An aquarium aerator (A) provides aeration and mixing within the RV. Influent is pumped from the influent vessel (I) to the RV. Reactor effluent leaves the RV through its top port and is sent to a receiving waste container (W). The combination of upflow reactor design and fine control of recycle and mixing within the reactor allow for the establishment of a dense biomass zone (BZ) within the reactor vessel and eliminates the need for external settling or separation to be carried out¹⁻⁴. No biomass wastage was needed or carried out for the duration of the experiment.

Using the peristaltic pump controls, the reactor's influent flow rate was set to 1.5 mL min⁻¹ (0.09 L hr⁻¹) and the recycle rate was set to 72.5 mL min⁻¹ (4.35 L hr⁻¹), establishing a recycle ratio of 49.3. The total volume of the reactor, recycle vessel, and tubing is estimated to be 1600 mL; the hydraulic residence time for this reactor is 17.8 hr. A comprehensive discussion of the HDBR system and it's adaption to a PBR configuration appears in Price et al, 2015^4 .

Sample Collection and Analytical Analysis

Influent and effluent samples were collected daily from the reactor influent and mixing vessels, vacuum filtered, and stored at -4° C. A Shimadzu Prominence HPLC/IC (Shimadzu Scientific Instruments, Columbia, MD) was used to analyze the samples for N species concentrations. NH_4^+ concentrations were determined using a Shodex IC YS-50 cation column (Shodex, NY, NY), with a flow rate of 1.0 mL min⁻¹, column oven temperature of 40° C, and a mobile phase composed of 4 mM Phosphoric acid. NO_2^- and NO_3^- concentrations were determined using a Shodex SI-52 4E anion column (Shodex, NY, NY), with a flow rate of 0.8 mL min⁻¹, column oven temperature of 45° C, and a mobile phase composed of 3.6 mM Na₂CO₃.

Biomass Measurement

Biomass density was determined at the beginning and end of each reactor influent condition via standard methods⁵ as previously described⁴. The biomass values for dates between measurement days were linearly interpolated between the beginning and end values within the applicable condition. Some conditions lacked starting biomass measurements. In this case, the biomass value obtained at the end of a condition was extended backwards a maximum of 3 days. This enabled the addition of 4 points to the set, while minimizing noise induced from poorly realized biomass values.

Light and Scanning Electron Microscopy

Microbial samples were collected from the HDBR and observed using both light and scanning electron microscopy. Micrographs were analyzed using ImageJ image processing software (www.http://imagej.nih.gov/ij/) and features such as length, shape and diameter of objects found in light microscopy and SEM pictures were matched.

A Leitz Diaplan bright field microscope was initially used for exploratory work on undiluted samples. The high density of the flocs impaired the passage of light and impaired the quality of the image. Dilution of the sample and disruption of the flocs, via gentle pipetting, improved the image quality and resolution but interfered with observing the internal structure of the flocs. Observation under a Zeiss Axioskop 50 differential interference contrast (DIC) microscope resulted in much better resolution and enabled the tentative identification of single algal units.

SEM samples were collected and the biomass was allowed to settle overnight. Supernatant was decanted and the remaining biomass was slowly freeze dried for three days at a vacuum pressure of 0.21 mBar, a chamber temperature of -40° C, and sample temperature of 6° C. A small subsample was coated with Platin-Palladium solution for 15 seconds at 40mA using a Cressington 208HR sputter coater (Cressington Scientific Instruments, Watford, England), flushing the chamber two times with Argon before starting. Examination used a Zeiss Supra 50 VP field emission scanning electron microscope (Carl Zeiss Group, Oberkochen, Germany) at an acceleration voltage of 10 kV and working distances varying from 9 to 12 mm.

qPCR Standard Targets

Total Bacteria (16S rDNA) Target

>gi|16226005|gb|AF420301.1| Uncultured bacterium 16S ribosomal RNA gene, partial sequence

Chlamydomonas reinhardtii (rbcL) Target

CAGCAACGAAAAGGAAACGGTCACGCCAACGCATGAATGGTTGTGAGTTTACGTTTTCGTCGTCTTTAGT AAAGTCAAGACCACCACGTAAACATTCATAAACTGCACGACCG

Parachlorella kessleri (rbcL) Target

ACAACCTAAAAGAGCACGACCGTATTTGTTAAGTTTATCACGTTCAACTTGAATACCATGTGGAGGCCCT TGGAATGTTTTTACATATGCTGGTGGAATACGAAGATCTTCTAAACGTAATGCACGAAGTGCTTTGAAAC CAA

References

- 1. C. M. Sales and W. K. Shieh, *Water Res*, 2006, **40**, 1442-1448.
- 2. K. Nootong and W. K. Shieh, *Bioresour Technol*, 2008, **99**, 6292-6298.
- 3. G. Ramanathan, C. M. Sales and W. K. Shieh, *Water Sci Technol*, 2014, **70**, 729-735.
- 4. J. R. Price, W. K. Shieh and C. M. Sales, *J. Vis. Exp.*, 2015, DOI: 10.3791/53443, e53443.
- 5. APHA, AWWA and WPCF, *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association, Washington, DC, 16 edn., 1985.
- 6. M. J. Ferris, G. Muyzer and D. M. Ward, *Appl Environ Microbiol*, 1996, **62**, 340-346.
- 7. D. J. Lane, B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin and N. R. Pace, *Proc Natl Acad Sci U S A*, 1985, **82**, 6955-6959.
- 8. G. A. Kowalchuk, J. R. Stephen and D. W. Boer, *Appl. Environ. Microbiol.*, 1997.
- 9. J. H. Rotthauwe, K. P. Witzel and W. Liesack, *Applied and Environmental Microbiology*, 1997, **63**, 4704-4712.
- 10. V. Degrange and R. Bardin, *Appl Environ Microbiol*, 1995, **61**, 2093-2098.
- 11. B. Vanparys, P. Bodelier and P. De Vos, *Curr Microbiol*, 2006, **53**, 255-257.
- 12. H. M. Dionisi, A. C. Layton, G. Harms, I. R. Gregory, K. G. Robinson and G. S. Sayler, *Appl Environ Microbiol*, 2002, **68**, 245-253.
- 13. G. Braker, A. Fesefeldt and K. P. Witzel, *Appl Environ Microbiol*, 1998, 64, 3769-3775.
- 14. I. N. Throback, K. Enwall, A. Jarvis and S. Hallin, *FEMS Microbiol Ecol*, 2004, **49**, 401-417.
- 15. G. Braker and J. M. Tiedje, Appl Environ Microbiol, 2003, 69, 3476-3483.
- 16. K. Kloos, A. Mergel, C. Rösch and H. Bothe, *Functional Plant Biology*, 2001, 28, 991.

Table S1: Specific Loading Rates								
	Specific Loading							
	- ~	(mg -N hr-1 g BM-1)						
T 1	Influent	NTT (NOA	Biological				
Index	Condition	NH4+	NO3-	Sample Id				
1	2	1.66	0.00					
2	2	1.49	0.00					
3	2	1.57	0.00					
4	2	1.22	0.00	C2				
5*	3	1.17	0.43	C3				
6	4	0.54	0.33					
7	4	0.48	0.31					
8	4	0.53	0.32	C4				
9	5	0.46	1.36					
10	5	0.51	1.44					
11	5	0.45	1.15					
12	5	0.53	1.47					
13	5	0.46	1.29					
14	5	0.43	1.33					
15	5	0.53	1.31					
16	5	0.40	1.02					
17	5	0.38	0.91					
18	5	0.48	1.35	C5				
19	8	0.67	0.81					
20	8	0.74	0.87					
21	8	1.37	1.64					
22	8	0.99	1.03					
23	8	0.88	0.97					
24	8	0.72	1.17	C8				
25	9	0.50	0.00					
26	9	0.54	0.00					
27	9	0.49	0.00					
28	9	0.32	0.06					
29	9	0.27	0.07					
30	9	0.27	0.06					
31	9	0.34	0.07					
32	9	0.41	0.09					
33	9	0.52	0.10					
34	9	0.86	0.11					
35	9	0.78	0.12					
36	9	0.91	0.10					
37	9	0.82	0.13					
38	9	0.85	0.12					
39	9	0.85	0.13	C9				
* Not used for regression analysis								

Table S2: Biological samples and extracted DNA concentrations							
Influent	TotalBiomassBiomassBiologicalDNA Conc						
Condition	Biomass	Volume	Density	Replicate			
	[g]	[L]	[g/L]		[ng/µL]		
				2-1	10.1		
2	1.85	0.79	2.34	2-2	11		
				2-3	8.66		
				3-1	12.5		
3	1.76	0.58*	3.03	3-2	9.75		
				3-3	17.2		
				4-1	14		
4	1.69	0.70	2.41	4-2	14		
_				4-3	10.2		
				5-1	7.62		
5	1.24	0.80	1.55	5-2	6.96		
				5-3	6.84		
				8-1	17.3		
8	1.44	0.76	1.91	8-2	19.7		
_				8-3	17.7		
				9-1	1.79		
9	0.90	1.00**	0.90	9-2	2.18		
				9-3	2.12		

* Estimated biomass value

** Biomass was suspended for biological and biomass density sampling.

Table S3: MG-RAST Project Data and Quality Control Statistics							
Sequencing Technology	Illumina HiSeq 2500						
Project Name	p_re	p_reactor					
Metagenome Name	CSJP002B	CSJP002C					
MG-RAST Metagenome ID	4632722.3	4632723.3					
Upload: bp Count	6,609,374,438	5,276,493,424					
Upload: Sequences Count	23,098,919	18,378,192					
Upload: Mean Sequence Length (bp)	286 ± 67	287 ± 68					
Upload: Mean GC (%)	54 ± 14	56 ± 14					
Artificial Duplicate Reads: Sequence Count	1,099,951	574,241					
Post QC: bp Count (bp)	4,336,518,992	3,575,544,668					
Post QC: Sequences Count	19,488,329	15,917,436					
Post QC: Mean Sequence Length (bp)	222 ± 93	224 ± 93					
Post QC: Mean GC percent (%)	54 ± 14	55 ± 13					
Processed: Predicted Protein Features	10,089,146	8,090,086					
Processed: Predicted rRNA Features	169,962	135,175					
Alignment: Identified Protein Features	4,281,784	3,365,875					
Alignment: Identified rRNA Features	3,733	3,461					
Annotation: Identified Functional Categories	3,376,080	2,633,453					

Table S4: qPCR Primers							
Target Organism	Target Loci	Primer/Target	Sequence	Reference			
Tot Dag	165	1055f	ATGGCTGTCGTCAGCT	6			
	105	1392r	ACGGGCGGTGTGTAC	6,7			
Chlamydamonas	rbel	rbcL_cr_F	CAGCAACGAAAAGGAAACGG	this study			
reinhardtii	IDEL	rbcL_cr_R	CGGTCGTGCAGTTTATGAATG	this study			
Parachlorella	rbel	rbcL_pk_F	ACAACCTAAAAGAGCACGACC	this study			
kessleri	IDEL	rbcL_pk_R	TTGGTTTCAAAGCACTTCGTG	this study			
		CTO189fA/B	GGAGRAAAGCAGGGGATCG	8			
AOB	16S	CTO189fC	GGAGGAAAGTAGGGGATCG	8			
		CTO654R	CTAGCYTTGTAGTTTCAAACGC	8			
		amoA-1F	GGGGTTTCTACTGGTGGT	9			
AOB	amoA	amoA-2R	CCCCTCKGSAAAGCCTTCTTC	9			
	16S	FGPS872	TTTTTTGAGATTTGCTAG	10			
Nitrobacter sp		FGPS1269'	CTAAAACTCAAAGGAATTGA	10			
Nituchastan	nxrB	NxrB 1F	ACGTGGAGACCAAGCCGGG	11			
Niirobacier sp		NxrB 1R	CCGTGCTGTTGAYCTCGTTGA	11			
Nituo gning an	160	NSR1113f	CCTGCTTTCAGTTGCTACCG	12			
Nurospira sp	105	NSR1264r	GTTTGCAGCGCTTTGTACCG	12			
1	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	nirk 1F	GGMATGGTKCCSTGGCA	13			
demuriners	nırK	nirK 5R	GCCTCGATCAGRTTRTGGTT	13			
donitrifions	nirS	nirS cd3AF	GTSAACGTSAAGGARACSGG	14			
denitrifiers		nirS R3cd	GASTTCGGRTGSGTCTTGA	14			
donituifions	nor	cnorB-2F	GACAAGNNNTACTGGTGGT	15			
demuriners		cnorB-6R	GAANCCCCANACNCCNGC	15			
danituifiana	7	nosZ-F	CGYTGTTCMTCGACAGCCAG	16			
demurmers	nosz	nosZ 1162R	CGSACCTTSTTGCCSTYGCG	14			

Table S5: Results of simple linear regression							
Dependent Variable Predictor Variable n P-value							
	Sp Loading Total N	38	0.2969				
Sp Removal Total N	Sp Loading NH_4^+	38	0.7806				
	Sp Loading NO ₃	38	0.1354				
	Sp Loading Total N	38	0.8408				
Sp Removal NH_4^+	Sp Loading NH_4^+	38	0.008387				
	Sp Loading NO ₃	38	0.06454				
	Sp Loading Total N	38	0.6224				
Sp Removal NO ₃ ⁻	Sp Loading NH_4^+	38	0.006409				
	Sp Loading NO ₃	38	0.009696				

Table S6: MG-RAST Relative Taxonomic Abundance							
Sequencing Technology	Illumina HiSeq						
Project Name	p_reactor						
Metagenome Name	CSJP002B	CSJP002C					
MG-RAST Metagenome ID	4632722.3	4632723.3					
Condition	3	5					
NH4+ Loading (mg -N / hr /g BM)	1.17	0.48					
NO3- Loading (mg -N / hr /g BM)	0.43	1.35					
α-diversity	350.4	395.7					
Domain	0.20/	0.40/					
Archaea	0.3%	0.4%					
	96.7%	96.7%					
Eukaryota	2.9%	2.8%					
Ammonia-oxidizing bacteria							
Nitrosomonas	0.34%	0.62%					
Nitrosococcus	0.26%	0.34%					
Nitrosospira	0.68%	1.21%					
Total	1.28%	2.16%					
Nitrite-oxidizing bacteria	2 4004	2 2201					
Nitrobacter	2.48%	2.32%					
Nitrospina	-	-					
Nitrococcus	0.09%	0.15%					
Nitrospira	0.07%	0.00%					
Total	2.64%	2.48%					
Algae							
Chlamvdomonas	0.30%	0.05%					
Parachlorella	0.09%	0.13%					
Cyanobacteria							
Leptolyngbya	0.00%	0.00%					

Table S7: Reads Mapped to Reference Genome									
	Condition Accession Number		Genus Species		Total Reads	Percent of Reads			
					[absolute count]	[%]			
		213517384	Chlamydomonas	reinhardtti	18896	11.2%			
Algae	C3	229915563	Parachlorella	kessleri	11016	6.6%			
		254798615	Parachlorella	kessleri	11007	6.5%			
		32880373	Chlamydomonas	reinhardtti	9595	5.7%			
		41179002	Chlamydomonas	reinhardtti	9561	5.7%			
	C5	229915563	Parachlorella	kessleri	13419	27.0%			
		254798615	Parachlorella	kessleri	13268	26.6%			
Cyanobacteria	C3	984535223	Leptolyngbya	Strain O-77	582	31.9%			
	C5	984535223	Leptolyngbya	Strain O-77	495	32.2%			

Table S8: Relative Gene Abundance (Relative to Condition 5)								
			Influent Condition					
Organism / Target	Primer Pair	Statistic	2	3	4	5	8	9
		Avg	0.82	0.55	1.81	1.00	0.71	0.48
AOB 16S	СТО	SE	0.02	0.01	0.02	0.01	0.02	0.01
100		p-value	3.35E-08	2.74E-17	1.11E-16		1.48E-10	8.28E-17
		Avg	0.76	0.46	2.05	1.04	0.59	0.20
AOB amoA	amoA	SE	0.06	0.04	0.16	0.11	0.05	0.02
		p-value	3.77E-02	1.19E-04	8.26E-05		1.72E-03	9.93E-07
		Avg	2.39	3.23	2.23	1.01	2.23	0.21
Nitrobacter sp. 16S	FGPS	SE	0.13	0.25	0.09	0.04	0.08	0.01
		p-value	1.81E-08	2.20E-07	1.57E-09		4.84E-10	4.91E-12
		Avg	1.07	0.97	1.99	1.00	1.66	0.61
<i>Nitrobacter sp.</i> nxrB	NxrB	SE	0.01	0.04	0.03	0.01	0.04	0.01
		p-value	2.57E-03	4.97E-01	8.01E-16		2.08E-10	9.16E-14
N7:	NSR	Avg	0.82	0.74	2.03	1.01	1.17	1.75
16S		SE	0.05	0.04	0.22	0.05	0.07	0.09
		p-value	1.23E-02	2.86E-04	4.09E-04		5.65E-02	1.18E-06
denitrifying		Avg	1.77	1.39	2.25	1.28	1.70	2.04
bacteria	nirK	SE	0.35	0.28	0.48	0.32	0.33	0.40
nirK		p-value	3.10E-01	8.00E-01	1.11E-01		3.70E-01	1.56E-01
denitrifying		Avg	0.59	1.24	1.92	1.00	1.41	0.53
bacteria	nirS	SE	0.01	0.04	0.02	0.01	0.03	0.01
nirS		p-value	6.38E-13	5.21E-05	3.16E-16		3.25E-10	2.54E-14
denitrifying		Avg	1.54	1.21	1.05	1.00	0.46	1.23
bacteria	nor	SE	0.13	0.10	0.01	0.01	0.00	0.03
nor		p-value	8.18E-04	4.74E-02	1.68E-02		5.68E-18	9.75E-07
dou ituiforin o		Avg	1.16	1.41	1.57	1.00	1.32	1.21
bacteria nosZ	nos	SE	0.03	0.02	0.02	0.01	0.02	0.03
		p-value	8.63E-05	7.93E-11	1.01E-12		2.41E-10	5.49E-06

FigureS1: A Composite of micrographs taken with DIC microscopy. A) little round green things (LRGT), B) filamentous segmented cyanobacteria, tentatively identified as *Leptolyngbya* sp., C) *Scenedesmus dimorphous*, and D) a close relative of *Scenedesmus dimorphous*.

Figure S2: Specific removal rate of total N (mg N hr⁻¹ g SS⁻¹) versus specific loading rates of (A) total N, (B) NH₄⁺, and (C) NO₃⁻ (mg N hr⁻¹ g SS⁻¹).

Sp Loading Total N (mg N/ hr g SS) **FigureS3:** Specific removal rate of (A) NH_4^+ and (B) NO_3^- (mg N hr⁻¹ g SS⁻¹) versus specific loading of total N (mg N hr⁻¹ g SS⁻¹).

Figure S4: Specific NH_4^+ and NO_3^- removal rates (mg N hr⁻¹ g SS⁻¹) versus specific loading rates (mg N hr⁻¹ g SS⁻¹).

Figure S5: The domain of specific loading rates used for the generation of **Figure 4**. Points possessing a specific NO_3^- loading rate of zero were removed.

Figure S6: Histograms of reads mapped to algal and cyanobacterial genomes: A) Condition 3 reads mapped to algae, B) Condition 5 mapped to algae, C) Condition 3 mapped to cyanobacteria, D) Condition 5 mapped to cyanobacteria.

B

Figure S7: (Panel A)Schematic of the HDBR system (not to scale). The major components of the HDBR are the reactor (Reactor), the recycle vessel (RV), an aerator (A), a vessel to hold reactor influent (I), and a waste container to receive reactor effluent (W). The HDBR architecture enables a dense and distinct biomass zone (BZ) to form within the reactor. (Panel B) Photograph of the HDBR system in use. The biomass forms a highly dense zone at the bottom of the reactor while the remaining reactor fluid and effluent contains limited suspended solids.