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A B S T R A C T

Fecal indicator bacteria (FIB) in rivers and streams serve as key markers of public health risks, but factors 
influencing spatiotemporal FIB variation in headwater streams at baseflow have received insufficient attention. 
We analyzed a 12-year dataset of FIB concentrations collected from 118 watersheds in the Delaware River Basin 
of the eastern United States across seasons to establish baseline conditions and investigate how landscape 
(watershed size and land cover) and in-stream (e.g., temperature and particulates) environmental variables relate 
to spatiotemporal FIB variations. We found that most probable number (MPN)-derived FIB levels in baseflow at 
86 % to 96 % of sites (for Escherichia coli and Enterococcus, respectively) were above human health regulatory 
limits for primary contact during the recreational season. Variables affecting FIB dynamics included watershed 
size, seasonal variations in stream temperature, total particulate carbon and nitrogen in the water, and land 
cover types – specifically, the relative extent of forested, developed, and agricultural areas. Based on watershed 
size, smaller headwaters contained higher recreational period FIB concentrations than larger rivers. Headwater 
FIB concentrations were related to land cover, with lower concentrations observed in forested watersheds, and 
higher concentrations in developed and agricultural watersheds. Microbial source tracking suggested that FIB 
originated from human and bovine sources in headwaters with developed or agricultural land cover. FIB levels 
tended to be lower in non-recreational seasons (winter, spring, and fall) in small headwater streams. In addition 
to human, cow and other animals, we speculate that FIB survival and turnover in local environments might also 
cause FIB occurrence. These findings help guide choices of indicators to address fecal contamination of rivers and 
streams and prioritize restorative actions at the landscape scale.

1. Introduction

Microbial contaminants are a leading cause of water quality degra
dation in the United States, affecting 20 % of all rivers and streams (US 
EPA, 2017), and impairing water uses such as recreation and drinking 
water supply. Land and water uses, such as those associated with ur
banized watersheds, significantly impact microbial contaminants 
(Zhang et al., 2020). As these risks are a concern for public health 
globally, extensive monitoring efforts are undertaken to assess the po
tential for pathogenic diseases spreading to humans (Abbas et al., 2021). 
However, such efforts are often time-consuming and resource-intensive, 

leaving many water bodies—especially smaller headwater stream
s—unmonitored. Currently fecal indicator bacteria (FIB) serve as valu
able tools to for monitoring, enabling targeted restoration and 
management efforts to mitigate fecal pollution in watersheds 
(Verhougstraete et al., 2015).

Understanding and predicting relationships between watershed uses, 
in-stream processes, and FIB is inherently challenging due to many 
influential variables (Abbas et al., 2021; Petersen and Hubbart, 2020). 
In-stream variables such as water temperature, solar radiation, sediment 
transport, settling, and resuspension, runoff, pH, and nutrients can all 
influence spatiotemporal FIB dynamics (Pachepsky et al., 2024; Park 
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et al., 2017; Petersen and Hubbart, 2020; Wang et al., 2018). At the 
landscape scale, watershed size or stream order, extent of agricultural 
and urban land covers, wastewater infrastructure, impervious surfaces, 
annual precipitation, and septic systems are variables shown to influ
ence spatiotemporal FIB concentrations (Hsu et al., 2023; Lininger et al., 
2022; Petersen and Hubbart, 2020; Price et al., 2018; Rafi et al., 2018; 
Sinclair et al., 2009; Verhougstraete et al., 2015). Thus, modeling and 
predicting FIB in streams typically involves high uncertainties (Abbas 
et al., 2021; Pandey et al., 2016). Further, the majority of investigations 
have focused on understanding and predicting stream FIB concentra
tions around storms, with little attention to FIB variability during 
baseflow throughout the year or among seasons (Park et al., 2017). 
Storm flows typically have predictably higher FIB concentrations than 
baseflow conditions due to the transport of sediment particles (Stumpf 
et al., 2010; Wang et al., 2018).

FIB in headwaters can originate from various human, agricultural, 
and ecosystem sources. Leaking septic systems can be a human FIB 
source during baseflow (Verhougstraete et al., 2015), as well as 
following precipitation events (McMinn et al., 2024). Human baseflow 
FIB sources can also include recreational activities such as swimming (Li 
et al., 2021). Agricultural FIB sources include pastureland adjacent to 
streams (Weller et al., 2022). Agricultural practices involving compost 
and natural fertilizers are potential origins of FIB in agricultural areas, 
including mushroom farms which involve manure and compost 
spreading, but the influence of mushroom farms on stream FIB con
centrations is unknown (Noble and Gaze, 1994; Obire and Ogechi, 
2013). There is also the potential for FIB from non-target wildlife 
(Badgley et al., 2019) and endemic FIB surviving in the environment 
(Devane et al., 2020). Particularly for headwater streams at baseflow 
conditions, when dilution of stream water is lowest and most 
human-water contact occurs, there is a poor understanding of FIB 
background conditions and environmental stressors causing high FIB 
levels with regards to watershed nonpoint-source pollution. Effectively 
identifying these stressors and addressing water quality impairments 
from fecal contamination requires understanding their seasonal influ
ence on FIB concentrations including during baseflow conditions, as 
well as background stream FIB levels (Verhougstraete et al., 2015).

Although headwaters serve as critical sources of drinking and rec
reational water, FIB monitoring in these areas remains limited and 
insufficient. Relationships between small headwaters, watersheds, and 
land use patterns have not been fully analyzed or recognized, particu
larly as human, agricultural, and animal sources of FIB can be mixed in 
headwaters, creating complexities that lack sufficient information. We 
aimed to identify background FIB conditions, and factors influencing 
spatial and temporal FIB variability, for headwater streams across a 
series of watersheds in the mid-Atlantic region of the eastern United 
States during baseflow across seasons. Our study region covers portions 
of the Delaware River Basin from the Christina River in Newark, Dela
ware, across southeastern Pennsylvania, to the Paulins Kill River in 
Newton, New Jersey (Fig. 1). Mushroom farms are a common compo
nent of the agricultural landscape and, along with dairy farms, influence 
stream water quality such as nutrient concentrations in this region 
(Franks, 2024). We collected water samples monthly over a 12-year 
period, combined with microbial source tracking, to achieve this aim 
(Fig. 1). We hypothesized that intra-annual physicochemical variability, 
water temperature, and particulate concentrations would be related to 
the temporal variation in FIB dynamics within individual streams, while 
watershed size and land cover (e.g., developed and agricultural versus 
forest areas) would be related to the spatial variation among streams.

2. Results

2.1. Spatial patterns in fecal indicator bacteria concentration

Most of the study sites had Escherichia coli (E. coli) and Enterococcus 
levels that greatly exceed US Environmental Protection Agency (US 

EPA) fecal bacteria limits for E. coli (126 cells 100 mL-1) and Enterococcus 
(35 cells 100 mL-1) in recreational water, particularly during summer 
months (Fig. S1 a-d; US EPA, 2012). Including the auxiliary data sites for 
samples collected during the recreational period (to complement the 
more intensively sampled recreation period FIB monitoring group with 
additional sites; Fig. 1), 86 % of streams had E. coli most probable 
number (MPN) geometric means above the US EPA primary contact 
limit and 96 % of streams had mean Enterococcus above the limit 
(Fig. 2a-b).

Watershed characteristics, including size and agricultural plus 
developed land cover, were primary variables explaining differences in 
FIB concentrations across sites. Watershed size was negatively related to 
Enterococcus by logarithmic least squares regression, with smaller wa
tersheds (e.g., <10 km2) having greater concentrations of Enterococcus 
than larger ones (R2=0.38, p = 0.001), and weakly (by variance 
explained) and marginally (by significance) related to E. coli concen
tration (R2=0.14, p = 0.055; Fig. 2c-d). Using linear least squares 
regression for land cover analyses, E. coli (R2=0.23, p = 0.011) and 
Enterococcus (R2=0.20, p = 0.021) concentrations were negatively 
related to forest cover in our study region (Fig. 2e-f). Additionally, E. coli 
(R2=0.42, p < 0.001) and Enterococcus (R2=0.26, p = 0.009) concen
trations significantly increased among watersheds with increasing 
agriculture plus developed area (Fig. 2g-h). However, we found no sig
nificant relationship between mushroom farm cover and baseflow FIB 
concentration (R2=0.001 and p > 0.9 for both E. coli and Enterococcus; 
Fig. S2). The high variability of mean FIB concentrations in small wa
tersheds (<10 km2; Fig. 2c-d) can be explained by agricultural and 
developed land cover, which had a stronger relationship with FIB levels 
in these watersheds (R2=0.61, p = 0.002 for E. coli and R2=0.37, p =
0.027 for Enterococcus; Fig. S3). Further, E. coli and Enterococcus means 
were positively related among recreational period sites (R2=0.54, p <
0.001; Fig. S4), but individual agricultural and developed classes (e.g., 
low intensity developed area on its own) did not have meaningful re
lationships with FIB (Figs. S5 and S6).

2.2. Temporal patterns in fecal indicator bacteria concentration

FIB concentrations exhibited strong seasonal patterns for the year- 
round sites. FIB levels peaked in the summer, when means were above 
the US EPA thresholds for E. coli (126 cells 100 mL-1) and Enterococcus 
(35 cells 100 mL-1; Fig. 3a-b). However, during the non-recreational 
season (fall, winter, and spring), mean FIB levels generally dropped 
below these limits. For E. coli, the highest mean concentration over all 
years was in June with 488 cells 100 mL-1, while the lowest was in 
March with 30 cells 100 mL-1. For Enterococcus, the highest mean con
centration over all years was in July with 496 cells 100 mL-1, while the 
lowest was in April with 13 cells 100 mL-1. However, we observed 
several samples in January with high FIB concentrations that influenced 
a high monthly mean relative to other winter months.

Following these seasonal patterns, E. coli and Enterococcus concen
trations were positively related to water temperature. Samples collected 
when stream water temperature was below 17 ◦C (typically from the 
non-recreational season) had mean FIB concentrations that were 
generally lower than or at the US EPA limit for primary recreation 
(Fig. 4a-b). However, in samples collected at water temperatures above 
17 ◦C, primarily during the recreational period, mean FIB concentra
tions were consistently above US EPA recreational limits for E. coli and 
Enterococcus. Mean concentrations for E. coli were lowest at 10 ◦C (36 
cells 100 mL-1) and highest at 20 ◦C (411 cells 100 mL-1). Meanwhile, 
mean concentrations for Enterococcus were lowest at 3 ◦C (13 cells 100 
mL-1) and highest at 21 ◦C (420 cells 100 mL-1).

Total particulate carbon (C) and nitrogen (N) concentrations posi
tively correlated with FIB concentrations among all samples collected at 
the study sites. Particulate C was strongly positively related with E. coli 
(linear least squares regression R2=0.79, p < 0.001) and Enterococcus 
(R2=0.73, p < 0.001) concentrations (Fig. 4c-d). Particulate N was even 
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Fig. 1. Experimental design for the study, including the project-level framework (top), sampling frequency groups (middle row), and purposes for analyses (bottom 
row). Note there can be overlap between sampling frequency grouped sites. Map displays sampling sites and surrounding land cover, including an inset map of the 
White and Red Clay Creeks, over ESRI 2024 basemap. Reference Table S1 for more details of sampling.

D.T. Myers et al.                                                                                                                                                                                                                                Water Research X 29 (2025) 100347 

3 



more strongly positively related with E. coli and Enterococcus concen
trations (R2=0.89, p < 0.001 and R2=0.81, p < 0.001, respectively) 
(Fig. 4e-f). The additional monitored water quality parameters, 
including pH and specific conductance, had weak relationships with FIB 
(Figs. S7 and S8).

2.3. Fecal indicator bacteria sources

Microbial source tracking (CowM2 for bovine-sourced DNA, and 
HF183 for human-sourced DNA; Griffith et al., 2013; US EPA, 2019) 
indicated that both human- and bovine-sourced FIB were present in our 
samples, supporting the influence of agricultural and developed land 
cover (and their related activities) on high FIB concentrations. 
Human-sourced FIB were found in 13 % of samples, including streams 
with as low as 59 % watershed agriculture plus developed cover (Fig. 5a, 

b). Bovine-sourced FIB were found in 78 % of samples, including streams 
with as low as 3 % agriculture plus developed cover (Fig. 5a, c; plots for 
agricultural and developed land cover separately can be found in 
Fig. S9). Notably, 18 % of headwater samples had FIB from neither 
human nor bovine sources (Fig. 5a). Watershed agriculture plus devel
oped cover for samples with neither human nor bovine sources ranged 
from 70 % to 89 %.

3. Discussion

3.1. Headwaters contain higher FIB concentrations than larger rivers

We found that FIB levels in temperate headwater streams were often 
above regulatory thresholds and had a highly variable, non-linear 
relationship with watershed size, with small headwaters maintaining 

Fig. 2. Bar plots in log-scale of recreational period geometric mean MPN E. coli (a) and Enterococcus concentrations (b), compared with US EPA primary contact 
limits of 126 cells 100 mL-1 for E. coli and 35 cells 100 mL-1 for Enterococcus, respectively (red lines). Each bar (x-axis) represents one headwater site. Relationships 
between watershed size and geometric mean MPN (c) E. coli and (d) Enterococcus, with logarithmic least squares regressions. Geometric mean MPN (e) E. coli and 
watershed forest cover, (f) Enterococcus and watershed forest cover, (g) E. coli and watershed agriculture plus developed cover, and (h) Enterococcus and watershed 
agriculture plus developed cover, with linear least squares regressions.
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higher FIB concentrations than larger rivers. Prior research has also 
documented higher E. coli concentrations for low-order streams within 
anthropogenically influenced watersheds (Rafi et al., 2018), however, 
minimally-influenced and more natural land cover dominated water
sheds in that study did not have higher E. coli concentrations in 
low-order streams (Rafi et al., 2018). Our work supports this finding 
because agricultural and developed land cover explained the high var
iations in mean FIB concentrations for small watersheds (Fig. S3).

Headwaters are strongly influenced by local landscape factors 
because of their close connectivity with the terrestrial ecosystem (e.g., 
less dilution and a more immediate connection with FIB sources; Klock 
et al., 2024), which may contribute to the high baseflow FIB concen
trations we documented for smaller watersheds. Longitudinal flow 
connects headwater microbial communities with those downstream 
(Bier et al., 2023; Huang et al., 2022; Price et al., 2018), especially by 
transport on particles that reduce mortality rates compared to free 
floating microbes detached from particles during transport (Anderson 
et al., 2005; Nguyen et al., 2016). We found greater concentrations of 
baseflow FIB in waters with higher particulate C and N concentrations, 
supporting that sediment transport from upstream could be an FIB 
source.

Small headwaters contribute to larger swimmable rivers, drinking 
water sources, and activities such as recreation and shellfishing in 
receiving waters (Stumpf et al., 2010). Surface water from river and 
lake/reservoir systems contributes substantially to the drinking water 
supply for major cities around the globe (Blaine et al., 2006; McDonald 
et al., 2014; Turner et al., 2021). Headwater FIB data provides vital 
information about contamination sources and bacteria transport to areas 
with targeted monitoring, such as for beaches, large rivers for recrea
tional use, or drinking water protection (Aufdenkampe et al., 2006; 
Kaplan et al., 2006). The higher FIB concentrations we documented for 
small developed watersheds support the protection of source water areas 
when considering management of recreation and drinking water, as well 
as planning watershed-scale land protection to incorporate headwaters 
(Aufdenkampe et al., 2006; Kaplan et al., 2006; Moravek et al., 2023).

3.2. Headwater FIB concentrations are related to land cover

We found that FIB concentrations increased with agricultural and 
developed land cover and that FIB sources included humans and cows. 

As our study watersheds were often rural with small population densities 
and without sewer connections to wastewater treatment plants, leaky or 
improperly maintained septic systems may be a source of human fecal 
pollution (McMinn et al., 2024). Study sites that had human-sourced FIB 
were often located in residential areas in the watershed and/or recrea
tional areas upstream, such as parks and ponds with active canoeing and 
kayaking activities. Similarly, sites that had bovine-sourced FIB could be 
downstream of pastures (cattle for dairy or meat), cropland, and/or 
cows visibly in the stream. This highlights the value of combining 
watershed characteristics with source tracking information to guide 
watershed planning and address fecal contamination (Aufdenkampe 
et al., 2006; Hart et al., 2023; Kaplan et al., 2006; Tarek et al., 2023). 
However, we did not discern relationships between FIB concentrations 
and watershed mushroom farm cover, which could be due to insufficient 
temporal resolution of our samples, lack of data for manure and compost 
spreading application rates, or to the overwhelming influence of 
watershed total agricultural and developed cover on FIB. Previous 
research has found relationships between mushroom farm cover and 
nutrient water quality in the region (Franks, 2024). To better understand 
FIB and mushroom farm relationships, future research should consider a 
higher resolution, targeted study of FIB sources (e.g., poultry manure 
compost; Noble and Gaze, 1994) in small streams with numerous 
watershed mushroom farms and composting operations, such as Egypt 
Run of the White Clay Creek watershed (Homsey, 2020).

To the north of our study area in the state of New York, USA, land 
cover such as pasture adjacent to the stream was related to high FIB 
concentrations from human and agricultural sources (Weller et al., 
2022). In watersheds south of our study area in Virginia, FIB concen
trations can also be higher in more anthropogenically disturbed water
sheds and during the recreational season (Badgley et al., 2019). 
However, there may have been ecosystem FIB sources beyond sources 
from agriculture and developed land such as non-target wildlife 
(Badgley et al., 2019). Further, in a Pennsylvania watershed west of our 
study area, developed land cover was associated with FIB concentrations 
that were higher than in nearby forested watersheds (Jeon et al., 2020). 
Climate and landscape changes as well as seasonal variability may affect 
future FIB (Robinson et al., 2022; Stallard et al., 2019).

Fig. 3. Seasonal patterns in a) E. coli and b) Enterococcus MPN 100 mL-1 for the year-round study sites. The red lines mark the US EPA thresholds for E. coli (126 cells 
100 mL-1) and Enterococcus (35 cells 100 mL-1) in recreational water. Y-axis values are displayed in log scale.
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3.3. Microbial survival and turnover in local environments might also 
cause FIB occurrence

We found chronically high FIB concentrations even in small water
sheds without evidence for human or bovine fecal contamination, sup
porting that there could be large FIB sources beyond the 
anthropogenically-driven inputs. Our pervasively high FIB levels in 
small, headwater streams at baseflow, along with the high percentage 
(18 %) of samples with neither human- nor bovine-sourced fecal bac
teria, implies a potential endemic source. FIB can maintain viable pop
ulations in waters and sediments outside of their normal animal hosts 
(Devane et al., 2020; Lew et al., 2023; Weiskerger et al., 2019; Zhi et al., 
2019). Also, our findings of positive relationships between water tem
perature and FIB concentrations, complemented by the seasonally 
higher FIB concentrations during the recreational period, may be due to 
greater survival of FIB in streams during the recreational period when 

there can be higher biological activity and more tolerable stream envi
ronments (Badgley et al., 2019; Petersen and Hubbart, 2020).

Although some FIB may ultimately be sourced from human or agri
cultural pollution, regulatory limits developed for fecal pathogens from 
contamination sources could lead to over-estimating public health risks 
in watersheds that also have these proximate-sourced, naturalized bac
teria (Devane et al., 2020). On the other hand, fecally-sourced E. coli and 
Enterococcus in the environment can survive for days to weeks (Baker 
et al., 2021), meaning FIB may accumulate in small streams over time, 
and there can be unknown FIB sources (Bowen et al., 2024). There may 
also be the potential for high FIB concentrations due to legacy land uses 
(e.g., pasture), which have been shown to affect other modern-day 
components of stream ecosystems including fish and invertebrate com
munities (Harding et al., 1998). Monitoring microbial community 
structure using high throughput sequencing and machine learning could 
provide a wealth of information about microbial assemblies and 

Fig. 4. Relationships between water temperature and mean a) E. coli and b) Enterococcus among all samples. The red lines mark the US EPA thresholds for E. coli (126 
cells 100 mL-1) and Enterococcus (35 cells 100 mL-1) in recreational water. Relationships between particulate carbon (C) and E. coli 100 mL-1 (c), particulate C and 
Enterococcus 100 mL-1 (d), particulate nitrogen (N) and E. coli 100 mL-1 (e), and particulate N and Enterococcus 100 mL-1 (f) among all samples, with linear least 
squares regressions.
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distributions, beyond specific fecal indicator bacteria concentrations, to 
help gauge these sources and human health risks (Arya et al., 2023; 
Bowen et al., 2024; Mo et al., 2024; Saleem et al., 2024; URycki et al., 
2024).

3.4. Implications

A better understanding of FIB dynamics and sources can improve 
management of public waters (Hart et al., 2024; Stallard et al., 2019). 
Beyond the eastern US, swimming, bathing, and other human contact 
locations in the western and central US, Europe, Asia, and Africa can 
face chronic water quality problems when watershed fecal pollution is 
not adequately addressed. These regions could greatly benefit from 
improved knowledge about pollution sources (Aqel et al., 2024; Bisimwa 
et al., 2022; Lane et al., 2020; McNair et al., 2025, 2022; Ming et al., 
2020; Reeves et al., 2004; Servais et al., 2007). Understanding the 
spatiotemporal variability and sources of baseflow FIB is particularly 
valuable for predictive models of fecal contamination. Such insights are 
critical for guiding management of water quality, particularly in the 
context of model development, validation, and uncertainty quantifica
tion (e.g., Myers et al., 2024; Xie et al., 2023). Improved prediction 
accuracy in FIB models could lead to reduce monitoring costs and more 
timely interventions (Lucius et al., 2019; Wheeler and Ledford, 2023).

4. Conclusions

Headwater streams offer significant benefits for downstream water 
quality and socio-ecological health but are often overlooked in FIB 
monitoring, which tends to prioritize more active recreational areas like 
large rivers, beaches, and lakes. From a regulatory perspective, head
water streams in our study region frequently contained FIB concentra
tions exceeding levels deemed safe for recreational human health. In 
some cases, elevated FIB levels were attributed to human and bovine 
fecal contamination. However, even small watersheds lacking apparent 
human or bovine FIB sources were found to have concerning FIB con
centrations, raising questions about current approaches for identifying 
and addressing sources of FIB contamination. We found that seasonality 
was a major component in temporal variation of FIB during baseflow 
conditions, with concentrations peaking in the summer when stream 
temperature is high. Meanwhile, forested and developed plus agricul
tural land cover can in-part explain spatial variability in FIB concen
trations at the watershed scale. Future work should consider using high 
throughput sequencing and machine learning to develop indicators that 
account for potentially endemic FIB population, which persist in soils 
and water independently of fecal contamination. Such efforts should 
particularly address the influence of seasonality and relationships with 
particulates to more effectively allocate resources and guide strategies 

for mitigating fecal contamination and addressing downstream water 
quality impairments in headwater streams.

5. Methods

5.1. Study area

The 34,965 km2 Delaware River Basin is one of the most important in 
the eastern US for water supply, water quality, and environmental and 
cultural resources (Jackson et al., 2005; Moore, 2021). It provides 
drinking water for New York City and Philadelphia, two of the largest 
metropolitan economies in the nation, while also maintaining a 
multi-billion dollar agricultural industry for crops, livestock, and 
poultry (Kauffman, 2016). It also provides valuable ecosystem services 
from natural forests and wetlands including water filtration, flood 
control, and fish and wildlife habitat (Kauffman, 2016). The land cover 
of the Delaware River Basin consists of 21 % developed cover, 18 % 
agricultural, 50 % forests, and 11 % other (including open water, 
grasslands, and herbaceous wetlands; Dewitz and USGS, 2021). The 
study region also has a high density of mushroom farms and mushroom 
compost operations in the White Clay Creek and Red Clay Creek 
sub-watersheds, which are not common in most agricultural settings 
(Franks, 2024; Homsey, 2020).

5.2. Sampling design and purposes

Sampling groups for this study included sites for recreational period 
monitoring (June-August), year-round monitoring, auxiliary data (to 
complement and validate findings from more intensively sampled 
groups), and microbial source tracking (Fig. 1, Table S1). Sites of the 
recreational period sampling group were chosen to investigate possible 
human, agriculture, or wildlife sources of fecal pollution including water 
treatment plants, residential areas, golf courses, mushroom farms, and 
preserved forest and meadow land. The recreation period is when the 
most human contact with the water occurs during recreational activities 
such as paddling, fishing, and wading. Twenty-seven sites with the most 
intensive recreational period sampling (5 samples per 30-day period in 
June, July, and August, from 2016–2024) occurred in the White Clay 
Creek and Red Clay Creek (Fig. 1, inset). The majority of sites from 
White Clay Creek in southeast Pennsylvania and northwest Delaware 
were chosen by the White Clay Watershed Association (whiteclay.org) 
as part of the White Clay Creek Wild and Scenic Program (under the 
National Wild and Scenic River System of the US National Park Service) 
to monitor water quality within the watershed. Sites included headwater 
tributaries of the East Branch of White Clay as well as sites along the 
Middle and West Branches. The project also sampled two branches and 
one tributary of Red Clay Creek, which along with White Clay, serves as 

Fig. 5. Microbial source tracking results for a) human-positive, bovine-positive, or neither human- nor bovine-positive FIB in headwater streams. Then, relationship 
between watershed agricultural plus developed cover and b) human-sourced and c) bovine-sourced gene copies.
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a major drinking water source for Newark, Delaware.
Sites of the year-round monitoring group were chosen to better our 

understanding of temporal and seasonal trends in FIB concentrations in 
the Delaware River Basin (Fig. 1). For year-round samples, four sites of 
particular interest were sampled bi-weekly throughout the year over a 
three year period, while an additional three sites were sampled monthly 
throughout the year (Table S1). Overlapping with some recreational 
period sites, year-round sample sites were focused on the White Clay 
Creek and Red Clay Creek watersheds (Fig. 1, inset).

Overlapping the recreational period and year-round sample sites and 
extending north to the Pocono-Kittatinny mountain range, as well as east 
to Brandywine Creek, 90 auxiliary sample sites were chosen as part of 
the Delaware River Watershed Initiative (4states1source.org; Fig. 1). 
Sites included a full range of land covers (forested, agricultural, subur
ban, and urban) and were generally centered around areas of interest for 
potential restoration projects. The purpose for the auxiliary sample sites 
was to validate and complement findings of recreational period and 
year-round FIB concentrations in the Delaware River Basin, and to 
provide a larger sample size for analyses with total particulate C and N 
(Fig. 1). Several sites were located within the Brandywine Valley unit of 
the First State National Historic Park and neighboring Brandywine Creek 
State Park in Delaware. Auxiliary sites in the Brandywine Creek water
shed included a number of headwater tributaries ranging from pristine 
forested land to a heavily developed commercial district as well as the 
main stem of Brandywine Creek, which experiences extensive recrea
tional impact from canoe/kayaking, river tubing, fishing, and wading. 
Samples at auxiliary sites were collected 2012–2024 although not all 
sites were sampled in all years, depending on the focus of related 
research activities of the larger project, with a range from 1 to 40 
samples per site, median of 9 samples per site, and 91 % of sites having 
greater or equal to three samples (Fig. 1). This might include sampling a 
site before, during, and after a restoration effort as well as comparing 
that site to nearby baseline impaired or unimpaired sites. Auxiliary sites 
were primarily sampled during the recreational period with a target of 
three sample days per site. For instance, the Brandywine Creek water
shed sites were sampled from 2017–2019 during the recreational period 
with three sample days per site (Table S1).

Finally, to better understand sources of fecal bacteria at priority sites, 
we used microbial source tracking to distinguish probable causes of the 
contamination (Fig. 1). Samples for microbial source tracking occurred 
primarily in the White Clay and Red Clay Creek watersheds, and also 
extended into the Brandywine Creek and Schuylkill River watersheds 
(Fig. 1, Table S1).

5.3. Sample collection and processing

Samples were collected during baseflow conditions. Streams were 
considered at baseflow 48 hours after a rainfall event of 0.25 inches or 
more. When sampling multiple sites within a watershed on the same 
day, sites were sampled in order from downstream to upstream. While 
sampling methods occasionally varied based on the overarching project, 
samples were most often collected in sterile one liter Nasco Whirl-Pak 
bags. Samples were transported on ice and processed on the same day 
as they were collected.

During the visits for FIB sample, physical and chemical water quality 
parameters were collected as part of the monitoring. Here, we describe 
relationships with stream temperature data, which were collected using 
hand-held Thermo Orion Star A329, Thermo Orion 5-Star, or YSI Pro 
Plus meters, and stream total particulate C and N, which were collected 
using grab samples for a subset of the samples (n = 76 and 40, respec
tively) and analyzed using US EPA method 440.0 elemental analysis. 
Temperature and total particulate C and N were selected based on the 
described literature for their strong influence on FIB. Additional phys
ical and chemical water quality parameters (dissolved organic carbon 
(DOC), acid neutralizing capacity (ANC), chloride, nitrate-nitrogen 
(NO3-N), calcium, copper, iron, sodium, sulfur, ammonium-nitrogen 

(NH4-N), orthophosphate (PO4-P), total phosphorus, total nitrogen, 
total particulate nitrogen, total particulate carbon, peak T, Humification 
Index, Slope Ratio, pH, dissolved oxygen (DO), specific conductance, 
and stream temperature) are presented for reference in Table S2.

Fecal bacteria were quantified as most probable number (MPN) per 
100 mL using Quanti-Tray 2000 kits from IDEXX Laboratories (West
brook, Maine, USA). E. coli were measured using Colilert and Entero
coccus were measured using Enterolert following instructions from the 
manufacturer (https://www.idexx.com). Samples were diluted to bring 
bacteria concentrations within the readable range of the assays (1 - 
2419.6 cells 100 mL-1). Dilutions were typically 10 × but could vary 
based on turbidity of the sample or land cover of the sample site (for 
instance, a very turbid sample or a sample from an agricultural or 
developed site with higher FIB concentrations may need to be diluted 
beyond 10 × to bring the bacteria concentration within the readable 
range of the assays). MPN results have been found to be essentially the 
same as colony forming units (CFU) analysis (Cowburn et al., 1994) but 
have the potential to differ because of the MPN’s probabilistic sampling 
approach (Gronewold and Wolpert, 2008); regardless, MPN has the 
benefit of being much more rapid, and our methods are approved for 
monitoring purposes by the US EPA (US EPA, 2024).

Field replicates (duplicate samples collected from the sample site) or 
laboratory replicates (duplicate aliquots from a single field sample) were 
processed for approximately 10 % of a batch of samples. For example, if 
20 samples were being processed, 2 replicates were included. Replicate 
samples were used for method validation, however, the replicate ob
servations were removed from the dataset prior to analysis to prevent 
overleveraging or bias.

5.4. Microbial source tracking

For microbial source tracking analyses, we chose primers and probes 
targeting Bacteroides sp. 16S rRNA genes that are specific for each host 
organism. Monitoring of source-specific Bacteroides can provide a more 
precise indicator of fecal contamination than monitoring for generalist 
E. coli (Chavarria et al., 2024). Bacteroides have been previously used to 
identify sources of water quality impairments (Li et al., 2019; Ver
hougstraete et al., 2015). We followed established analytical procedures 
using two pairs of primers and probes: CowM2 for bovine-sourced DNA 
(Raith et al., 2013; Shanks et al., 2008), and HF183 for human-sourced 
DNA (Griffith et al., 2013; US EPA, 2019). For each sample, a 20 µL 
reaction was performed using 1 µL DNA for bovine-sourced copies, and 2 
µL DNA for human-sourced copies, along with negative and positive 
controls (standards). TaqMan Environmental PCR Master Mix 2.0 
(Applied Biosystems, Waltham, Massachusetts, USA) was used for qPCR 
reactions on a QuantStudio 3 thermocycler (Applied Biosystems). All 
samples were run in triplicates, with the result taking the average of the 
number of copies and only when two or more replicates were positive. 
We defined positive qPCR results as those that exhibited amplification 
(measured by fluorescence at each cycle) greater than any observed in 
the negative controls. 0.2 µL of bovine serum albumen (BSA) was added 
to samples to increase the effectiveness of PCR in the potential presence 
of inhibitors. The TaqMan PCR program was as follows: Initial dena
turation of samples was at 50 ◦C for 2 min and 95 ◦C for 10 min, followed 
by 95 ◦C for 15 s and 60 ◦C for 1 min in each of 45 amplification cycles. 
Results past 45 cycles were removed to reduce the potential for false 
positives. Gene copy numbers were quantified by standard curves 
created using a 1:10 dilution series from commercially purchased 
standards (Integrated DNA Technologies, Coralville, Iowa USA) of 
known copy numbers (Griffith et al., 2013; US EPA, 2019).

5.5. Data processing and statistical analysis

Watershed boundaries were topographically delimited for each 
sampling site using ArcGIS Spatial Analyst tools (ESRI; Redlands, Cali
fornia, USA). Land cover was determined by National Land Cover 
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Database (NLCD) 2019 (Dewitz and USGS, 2021), aggregated by class 
(agriculture includes cropland and pasture/hay; developed includes 
open space, low, medium, and high intensity; and forest includes de
ciduous, evergreen, and mixed). We also included the proportion of 
watershed area as mushroom farms using a spatial mushroom farm 
dataset for White Clay and Red Clay watersheds (Homsey, 2020).

The US EPA provides recreational water quality criteria for E. coli 
and Enterococcus, the fecal bacteria which are the best indicators of 
health risks from recreational water contact (US EPA, 2012). The rec
ommendations state that for fresh water the geometric mean of CFU or 
equivalent MPN numbers per 100 mL of water determined via a 
culture-based method should not exceed 126 for E. coli or 35 for 
Enterococcus. These guidelines were developed for use in primary con
tact recreation which includes swimming, bathing, surfing, or similar 
activities. However, the majority of sites in this study are not subject to 
this type of recreation. Instead, exposure is more likely to derive from 
wading, use for pets or livestock, and fishing. Canoeing and kayaking are 
also possible in the few larger tributaries.

Spatial relationships among sites and environmental variables were 
examined by taking the E. coli and Enterococcus concentration (expressed 
as geometric mean) for each monitoring site over the study period 
during the recreation season, and comparing with watershed-average 
land cover and in-stream water quality attributes, using linear or loga
rithmic least squares regression in R Statistical Software (v4.3.1; R Core 
Team, 2024). We based this approach on regressions of land cover 
against various water quality parameters including FIB, aggregated by a 
summary of the water quality data (mean, median, etc.), as a way to 
gauge environmental stressors to water quality across many sites and 
over time (Badgley et al., 2019; Myers et al., 2024). Linear regression 
was used for all analyses involving land cover and FIB relationships, as 
well as water quality (including particulate C and N) and FIB relation
ships. Logarithmic regression was used only for the relationships be
tween watershed size and forest land cover with FIB geometric means 
because it better modeled the gentler slope for larger watersheds. 
Watershed size was used in spatial relationships rather than stream 
order because at our high resolution, streams of the same order could 
have meaningfully different watershed sizes. Agricultural and developed 
land were combined for analyses to represent whole-watershed human 
land cover impacts, because of additive relationships with FIB among 
land cover classes. Temporal patterns related to stream temperature 
were modeled by aggregating data to monthly geometric means as well 
as presenting individual sample results, and examining intra-annual 
variation due to seasonality. Note that seasonality due to the timing 
and extent of manure applications to fields was not included in temporal 
analyses due to a lack of data. For additional water quality parameters 
(e.g., total particulate C and N), all FIB samples with a corresponding 
laboratory water quality record were used in the analyses. Results were 
compared with the US EPA thresholds for E. coli and Enterococcus in 
recreational water to assess public health risks. Statistical relationships 
were considered significant if p < 0.05 and marginally significant if p <
0.10. Relationships were considered fit if R2>0.20 and weak if R2<0.20.

Results above or below the readable range were assigned the value of 
those limits so that calculations would not be biased against censored 
data exclusions (Corsi et al., 2021). We made this choice because 
censored data below the readable range (1 cell 100 mL-1) accounted for 
4.0 % of E. coli and 7.4 % of Enterococcus samples, which were both 
below the 15 % maximum percentage recommended for substitutions 
(US EPA, 2000). Censored data above the readable range (>2419.6 cells 
100 mL-1) accounted for only 0.45 % of E. coli and 0.30 % of Enterococcus 
samples.

Supplementary information

Supplementary information is available online including Table S1 
and S2 and Figs. S1 to S8.
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Kleinheinz, G.T., Meriläinen, P., Nshimyimana, J.P., Phanikumar, M.S., Piggot, A.M., 
Pitkänen, T., Robinson, C., Sadowsky, M.J., Staley, C., Staley, Z.R., Symonds, E.M., 
Vogel, L.J., Yamahara, K.M., Whitman, R.L., Solo-Gabriele, H.M., Harwood, V.J., 
2019. Impacts of a changing earth on microbial dynamics and human health risks in 
the continuum between beach water and sand. Water Res. https://doi.org/10.1016/ 
j.watres.2019.07.006.

Weller, D.L., Murphy, C.M., Johnson, S., Green, H., Michalenko, E.M., Love, T.M.T., 
Strawn, L.K., 2022. Land Use, Weather, and Water Quality Factors Associated With 
Fecal Contamination of Northeastern Streams That Span an Urban-Rural Gradient. 
Front. Water 3. https://doi.org/10.3389/frwa.2021.741676.

Wheeler, C.T., Ledford, S.H., 2023. Stability in headwater chemical signatures across a 
dynamic flow regime in a highly urbanized Piedmont catchment. Hydrol. Process. 
37. https://doi.org/10.1002/hyp.14825.

Xie, Z., Chen, S., Huang, J., Li, D., Lu, X., 2023. Patterns and drivers of fecal coliform 
exports in a typhoon-affected watershed: insights from 10-year observations and 
SWAT model. J. Clean. Prod. 406. https://doi.org/10.1016/j.jclepro.2023.137044.

Zhang, X., Zhi, X., Chen, L., Shen, Z., 2020. Spatiotemporal variability and key 
influencing factors of river fecal coliform within a typical complex watershed. Water 
Res. 178. https://doi.org/10.1016/j.watres.2020.115835.

Zhi, S., Banting, G., Stothard, P., Ashbolt, N.J., Checkley, S., Meyer, K., Otto, S., 
Neumann, N.F., 2019. Evidence for the evolution, clonal expansion and global 
dissemination of water treatment-resistant naturalized strains of E. coli in 
wastewater. Water Res. 156. https://doi.org/10.1016/j.watres.2019.03.024.

D.T. Myers et al.                                                                                                                                                                                                                                Water Research X 29 (2025) 100347 

11 

https://doi.org/10.1111/1752-1688.12373
https://doi.org/10.2134/jeq2016.03.0114
https://doi.org/10.3390/w12061796
https://doi.org/10.3390/w12061796
https://doi.org/10.1016/j.scitotenv.2017.09.162
https://doi.org/10.1016/j.scitotenv.2017.09.162
http://www.R-project.org
https://doi.org/10.2134/jeq2017.12.0488
https://doi.org/10.2134/jeq2017.12.0488
https://doi.org/10.1016/j.watres.2013.03.061
https://doi.org/10.1016/j.watres.2013.03.061
https://doi.org/10.1021/es034797g
https://doi.org/10.1021/es034797g
https://doi.org/10.1128/msystems.01240-21
https://doi.org/10.1128/msystems.01240-21
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0059
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0059
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0059
https://doi.org/10.1016/j.scitotenv.2006.12.010
https://doi.org/10.1128/AEM.01843-07
https://doi.org/10.1016/j.watres.2008.12.006
https://doi.org/10.1016/j.watres.2008.12.006
https://doi.org/10.1007/s11270-019-4083-3
https://doi.org/10.1007/s11270-019-4083-3
https://doi.org/10.1016/j.watres.2010.07.004
https://doi.org/10.1016/j.watres.2010.07.004
https://doi.org/10.1016/j.scitotenv.2023.162181
https://doi.org/10.1016/j.scitotenv.2023.162181
https://doi.org/10.1038/s41467-021-27509-9
https://doi.org/10.1038/s41467-021-27509-9
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0067
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0067
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0067
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0069
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0069
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0069
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0070
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0070
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0071
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0071
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0072
http://refhub.elsevier.com/S2589-9147(25)00046-5/sbref0072
https://doi.org/10.1073/pnas.1415836112
https://doi.org/10.1073/pnas.1415836112
https://doi.org/10.1016/j.scitotenv.2018.04.036
https://doi.org/10.1016/j.scitotenv.2018.04.036
https://doi.org/10.1016/j.watres.2019.07.006
https://doi.org/10.1016/j.watres.2019.07.006
https://doi.org/10.3389/frwa.2021.741676
https://doi.org/10.1002/hyp.14825
https://doi.org/10.1016/j.jclepro.2023.137044
https://doi.org/10.1016/j.watres.2020.115835
https://doi.org/10.1016/j.watres.2019.03.024

	High fecal indicator bacteria in temperate headwater streams at baseflow: implications for management and public health
	1 Introduction
	2 Results
	2.1 Spatial patterns in fecal indicator bacteria concentration
	2.2 Temporal patterns in fecal indicator bacteria concentration
	2.3 Fecal indicator bacteria sources

	3 Discussion
	3.1 Headwaters contain higher FIB concentrations than larger rivers
	3.2 Headwater FIB concentrations are related to land cover
	3.3 Microbial survival and turnover in local environments might also cause FIB occurrence
	3.4 Implications

	4 Conclusions
	5 Methods
	5.1 Study area
	5.2 Sampling design and purposes
	5.3 Sample collection and processing
	5.4 Microbial source tracking
	5.5 Data processing and statistical analysis

	Supplementary information
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	Data availability
	References


