

The impact of wastewater treatment plant effluent on the composition of microbial communities within receiving streams

Jacob Price^a, Sarah Ledford^b, Michael Ryan^a, Laura Toran^b, and Christopher Sales^a

^a Drexel University, ^b Temple University

November 8th, 2017

Introduction

- BOD/COD
- Excess Nutrients
 N, P
- Pathogens/Parasites
 - Cryptosporidium
 - Giardia lamblia

Methods

Sampling – 6 sites / 2 days

- Upstream/downstream
 - Upper Gwynedd WWTP
 - Ambler WWTP
- Sandy Run
- Below confluence Wissahickon Creek and Sandy Run

Analysis

- Water chemistry
- qPCR fecal-associated taxa
 - B. dorei Human-specific
 - Bacteroides spp. non-specific
- 16s rDNA amp seq
 - Full community
 - Indicator subset (McLellan et al, 2010)
 - Bifidobacteriales,
 - Bacteroidales, and
 - Clostridiales

Alpha Diversity

- Effluent sources increased species richness
 - Upper Gwynedd: ~ 630
 - Ambler: ~ 110
- Richness decreased between the two plants
 - ~ 850 taxa
- Effluent source appears to result in a net loss of diversity

Fecal Indicators: qPCR vs Amp Seq

- Effluent outflows significant sources
 - B. dorei
 - Bacteroides spp.
- (Abs & Rel) Abundances decreased between the two WWTP

Ordination - PCA

• Effluent sources result in repeatable shifts in community composition

 Major changes in community structure also occur between Upper Gwynedd and Ambler WWTP

Ordination - DPCoA

- Effluent sources result in repeatable shifts in community composition
 - Bacteroidetes increase
 - Cyanobacteria decrease
- Major changes in community structure also occur between Upper Gwynedd and Ambler WWTP
 - Proteobacteria increase
 - Bacteroidetes decrease

Differential Abundance

Two patterns

- At effluent source
 - Richness
 - Fecal-associated taxa
- Between WWTP
 - Richness
 - Fecal-associated taxa

Test for Diff. Abund.

 Identify taxa that significantly increase or decrease

Differential Abundance

At effluent source

- 137 taxa differentially abundant
 - 7 to 11.6 times more abundant
- Largest increases
 - WWTP-associated
 - Nutrient cyclers
 - AOB / NOB
 - denitrifiers
 - Indicator subset Orders
 - Bifidobacteriales,
 - Bacteroidales, and
 - Clostridiales

Differential Abundance

At effluent source

- 137 taxa differentially abundant
 - 7 to 11.6 times more abundant
- Largest increases
 - WWTP-associated
 - Nutrient cyclers
 - AOB / NOB
 - denitrifiers
 - Indicator subset Orders
 - Bifidobacteriales,
 - Bacteroidales, and
 - Clostridiales

Between WWTP

- 205 taxa
 - 102 increased
 - 103 decreased
 - WWTP-associated
 - Nutrient cyclers
 - Indicator Orders

<u>Comparison</u>

- 53 taxa in common
- All 53
 - Increased at effluent source
 - Decreased downstream

Conclusions

- Effluent outflows
 - Increase species richness
 - Sources of
 - WWTP-associated taxa
 - Nutrient cycling bacteria
 - Fecal-associated / indicator organisms
- Partial attenuation
 - Taxa sourced from effluent decreased severely downstream
 - Effluent-sourced taxa do not persist downstream
- More work is needed
 - Limited dataset \rightarrow limited generalizability

Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in receiving streams

Price, J.R., Ledford, S.H., Ryan, M.O., Toran, L., and C.M. Sales. 2017. Sci. Total Environ. doi:10.1016/j.scitotenv.2017.09.162.

Other Themes:

- Antecedent moisture conditions
- N & P did not control community structure
- Use of indicator subsets may be feasible

Acknowledgements

- Contributors:
 - Sarah Ledford
 - Michael Ryan
 - Laura Toran
 - Chris Sales
 - Students of Env Eng Process Lab
- Delaware River
 Watershed Initiative

microbes.cae.drexel.edu @SalesLaboratory
jacobrprice.github.io @Jake_in_the_Lab